Skip to main content

Gene Transfer into Mouse Haemogenic Sites, as a Mean to Functionally Approach the Control of Mesoderm Determination Towards a Haematopoietic Fate

  • Chapter
Electroporation and Sonoporation in Developmental Biology

It is now well established that in all vertebrate species the development of a functional haematopoietic system requires the sequential contribution of two independently generated pools of haematopoietic precursors. These two haematopoietic precursors waves are dedicated to specialized functions regarding haematopoiesis ontogeny. The first, which occurs in the extra-embryonic compartment, in the yolk Sac (YS) blood islands, rapidly produces the differentiated erythro-myeloid cells (erythrocytes, macrophages and megakaryocytes) necessary for developing tissue homeostasis. This extremely fast differentiation seems to occur at the expense of differentiation and maintenance potentials (see below). The second wave of precursors develops in the intra-embryonic compartment, in the aorta region, and gives rise to Haematopoietic Stem Cells (HSC), which are thought to be responsible for lifelong maintenance of haematopoiesis (Cumano and Godin, 2007).

In lower vertebrate species, such as Avian and Amphibian, the independent generation of extra- and intra-embryonic precursors pools, as well as the transient nature of the extra-embryonic one, was demonstrated through the use of interspecific chimaeras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bertrand JY, Giroux S, Cumano A, Godin I (2005a). Hematopoietic stem cell development during mouse embryogenesis. Methods Mol Med 105: 273–88.

    Google Scholar 

  • Bertrand JY, Giroux S, Golub R, Klaine M, Jalil A, Boucontet L, Godin I, Cumano A (2005b). Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc Natl Acad Sci USA 102: 134–39.

    Article  CAS  Google Scholar 

  • Colucci F, Soudais C, Rosmaraki E, Vanes L, Tybulewicz VL, Di Santo JP (1999). Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation. J Immunol 162: 2761–5.

    CAS  Google Scholar 

  • Cormier F, Dieterlen-Lièvre F (1988). The wall of the chick embryo aorta harbours M-CFC, G-CFC, GM-CFC and BFU-E. Development 102: 272–85.

    Google Scholar 

  • Cumano A, Dieterlen-Lievre F, Godin I (1996). Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86: 907–16.

    Article  CAS  Google Scholar 

  • Cumano A, Ferraz JC, Klaine M, Di Santo JP, Godin I (2001). Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15: 477–85.

    Article  CAS  Google Scholar 

  • Cumano A, Godin I (2007). Ontogeny of the hematopoietic system. Annu Rev Immunol 25: 745–85.

    Article  CAS  Google Scholar 

  • Dieterlen-Lièvre F (1975). On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol 33: 607–19.

    Google Scholar 

  • Dieterlen-Lièvre F, Martin C (1981). Diffuse intraembryonic hemopoiesis in normal and chimeric Avian development. Dev Biol 88: 180–91.

    Article  Google Scholar 

  • Downs KM, Davies T (1993). Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118: 1255–66.

    CAS  Google Scholar 

  • Giroux SJ, Alves-Leiva C, Le'luse Y, Martin P, Albagli O, Godin I (2007). Gene transfer to pre-hematopoietic and committed hematopoietic precursors in the early mouse Yolk Sac: a comparative study between in situ electroporation and retroviral transduction. BMC Dev Biol 7: 79.

    Article  Google Scholar 

  • Godin I, Garcia Porrero JA, Coutinho A, Dieterlen-Liévre F, Marcos MAR (1993). Paraaortic splanchnopleura contains B1a lymphocyte precursors. Nature 364: 67–9.

    Article  CAS  Google Scholar 

  • Godin I, Dieterlen-Lièvre F, Cumano A. (1995). Emergence of multipotent hematopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryo, beginning at 8.5 days postcoi-tus. Proc Natl Acad Sci USA 92: 773–77.

    Article  CAS  Google Scholar 

  • Godin I, Garcia Porrero JA, Dieterlen-Liévre F, Cumano A. (1999). Stem cell emergence and hemopoietic activity are incompatible in mouse intraembryonic sites. J Exp Med 190: 43–52.

    Article  CAS  Google Scholar 

  • Kyba M, Perlingeiro RC, Daley GQ (2002). HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109: 29–37.

    Article  CAS  Google Scholar 

  • Lassila O, Martin C, Toivanen P, Dieterlen-Lièvre F (1982). Erythropoiesis and lymphopoiesis in the chick yolk-sac-embryo chimeras: contribution of yolk sac and intraembryonic stem cells. Blood 59: 377–81.

    CAS  Google Scholar 

  • Le Douarin N (1969). Particularités du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme ‘marquage biologique’ dans les recherches sur les interactions tissulaires et les migration cellulaires au cours de l'ontogenèse. Bull biol Fr Belg 103: 435–52.

    Google Scholar 

  • McGrath KE, Koniski AD, Malik J, Palis J (2003). Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101: 1669–76.

    Article  CAS  Google Scholar 

  • Medvinsky A, Dzierzak E (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86: 897–906.

    Article  CAS  Google Scholar 

  • Medvinsky AL, Samoylina NL, Muler AM, Dzierzak EA (1993). An early pre-liver intraembry-onic source of CFU-S in the developing mouse. Nature 364: 64–7.

    Article  CAS  Google Scholar 

  • Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E (1994). Development of hemat-opoietic stem cell activity in the mouse embryo. Immunity 1: 291–301.

    Article  Google Scholar 

  • Nakamura Y, Yamamoto M, Matsui Y (2002). Introduction and expression of foreign genes in cultured mouse embryonic gonads by electroporation. Reprod Fertil Dev 14: 259–65.

    Article  CAS  Google Scholar 

  • Quinlan JM, Yu W Y, Hornsey MA, Tosh D, Slack JM (2006). In vitro culture of embryonic mouse intestinal epithelium: cell differentiation and introduction of reporter genes. BMC Dev Biol 6: 24.

    Article  Google Scholar 

  • Turpen JB (1998). Induction and early development of the hematopoietic and immune systems in Xenopus. Dev Comp Immunol 22: 265–78.

    Article  CAS  Google Scholar 

  • Turpen JB, Kelley CM, Mead PE, Zon LI (1997). Bipotential primitive-definitive hematopoietic progenitors in the vertebrate embryo. Immunity 7: 325–34.

    Article  CAS  Google Scholar 

  • Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D (1997). Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7: 335–44.

    Article  CAS  Google Scholar 

  • Zaehres H, Daley GQ (2006). Transgene expression and RNA interference in embryonic stem cells. Methods Enzymol 420: 49–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Godin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Kaushik, AL., Giroux, S.J.D., Klaine, M., Jalil, A., Lécluse, Y., Godin, I. (2009). Gene Transfer into Mouse Haemogenic Sites, as a Mean to Functionally Approach the Control of Mesoderm Determination Towards a Haematopoietic Fate. In: Nakamura, H. (eds) Electroporation and Sonoporation in Developmental Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-09427-2_18

Download citation

Publish with us

Policies and ethics