Advertisement

Gene Transfer into Mouse Haemogenic Sites, as a Mean to Functionally Approach the Control of Mesoderm Determination Towards a Haematopoietic Fate

  • Anna-Lila Kaushik
  • Sébastien J. D. Giroux
  • Michèle Klaine
  • Ali Jalil
  • Yann Lécluse
  • Isabelle Godin

It is now well established that in all vertebrate species the development of a functional haematopoietic system requires the sequential contribution of two independently generated pools of haematopoietic precursors. These two haematopoietic precursors waves are dedicated to specialized functions regarding haematopoiesis ontogeny. The first, which occurs in the extra-embryonic compartment, in the yolk Sac (YS) blood islands, rapidly produces the differentiated erythro-myeloid cells (erythrocytes, macrophages and megakaryocytes) necessary for developing tissue homeostasis. This extremely fast differentiation seems to occur at the expense of differentiation and maintenance potentials (see below). The second wave of precursors develops in the intra-embryonic compartment, in the aorta region, and gives rise to Haematopoietic Stem Cells (HSC), which are thought to be responsible for lifelong maintenance of haematopoiesis (Cumano and Godin, 2007).

In lower vertebrate species, such as Avian and Amphibian, the independent generation of extra- and intra-embryonic precursors pools, as well as the transient nature of the extra-embryonic one, was demonstrated through the use of interspecific chimaeras.

Keywords

Organ Culture Haematopoietic Stem Cell Haematopoietic Cell Blood Island Limit Dilution Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertrand JY, Giroux S, Cumano A, Godin I (2005a). Hematopoietic stem cell development during mouse embryogenesis. Methods Mol Med 105: 273–88.Google Scholar
  2. Bertrand JY, Giroux S, Golub R, Klaine M, Jalil A, Boucontet L, Godin I, Cumano A (2005b). Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc Natl Acad Sci USA 102: 134–39.CrossRefGoogle Scholar
  3. Colucci F, Soudais C, Rosmaraki E, Vanes L, Tybulewicz VL, Di Santo JP (1999). Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation. J Immunol 162: 2761–5.Google Scholar
  4. Cormier F, Dieterlen-Lièvre F (1988). The wall of the chick embryo aorta harbours M-CFC, G-CFC, GM-CFC and BFU-E. Development 102: 272–85.Google Scholar
  5. Cumano A, Dieterlen-Lievre F, Godin I (1996). Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86: 907–16.CrossRefGoogle Scholar
  6. Cumano A, Ferraz JC, Klaine M, Di Santo JP, Godin I (2001). Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15: 477–85.CrossRefGoogle Scholar
  7. Cumano A, Godin I (2007). Ontogeny of the hematopoietic system. Annu Rev Immunol 25: 745–85.CrossRefGoogle Scholar
  8. Dieterlen-Lièvre F (1975). On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol 33: 607–19.Google Scholar
  9. Dieterlen-Lièvre F, Martin C (1981). Diffuse intraembryonic hemopoiesis in normal and chimeric Avian development. Dev Biol 88: 180–91.CrossRefGoogle Scholar
  10. Downs KM, Davies T (1993). Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118: 1255–66.Google Scholar
  11. Giroux SJ, Alves-Leiva C, Le'luse Y, Martin P, Albagli O, Godin I (2007). Gene transfer to pre-hematopoietic and committed hematopoietic precursors in the early mouse Yolk Sac: a comparative study between in situ electroporation and retroviral transduction. BMC Dev Biol 7: 79.CrossRefGoogle Scholar
  12. Godin I, Garcia Porrero JA, Coutinho A, Dieterlen-Liévre F, Marcos MAR (1993). Paraaortic splanchnopleura contains B1a lymphocyte precursors. Nature 364: 67–9.CrossRefGoogle Scholar
  13. Godin I, Dieterlen-Lièvre F, Cumano A. (1995). Emergence of multipotent hematopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryo, beginning at 8.5 days postcoi-tus. Proc Natl Acad Sci USA 92: 773–77.CrossRefGoogle Scholar
  14. Godin I, Garcia Porrero JA, Dieterlen-Liévre F, Cumano A. (1999). Stem cell emergence and hemopoietic activity are incompatible in mouse intraembryonic sites. J Exp Med 190: 43–52.CrossRefGoogle Scholar
  15. Kyba M, Perlingeiro RC, Daley GQ (2002). HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109: 29–37.CrossRefGoogle Scholar
  16. Lassila O, Martin C, Toivanen P, Dieterlen-Lièvre F (1982). Erythropoiesis and lymphopoiesis in the chick yolk-sac-embryo chimeras: contribution of yolk sac and intraembryonic stem cells. Blood 59: 377–81.Google Scholar
  17. Le Douarin N (1969). Particularités du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme ‘marquage biologique’ dans les recherches sur les interactions tissulaires et les migration cellulaires au cours de l'ontogenèse. Bull biol Fr Belg 103: 435–52.Google Scholar
  18. McGrath KE, Koniski AD, Malik J, Palis J (2003). Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101: 1669–76.CrossRefGoogle Scholar
  19. Medvinsky A, Dzierzak E (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86: 897–906.CrossRefGoogle Scholar
  20. Medvinsky AL, Samoylina NL, Muler AM, Dzierzak EA (1993). An early pre-liver intraembry-onic source of CFU-S in the developing mouse. Nature 364: 64–7.CrossRefGoogle Scholar
  21. Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E (1994). Development of hemat-opoietic stem cell activity in the mouse embryo. Immunity 1: 291–301.CrossRefGoogle Scholar
  22. Nakamura Y, Yamamoto M, Matsui Y (2002). Introduction and expression of foreign genes in cultured mouse embryonic gonads by electroporation. Reprod Fertil Dev 14: 259–65.CrossRefGoogle Scholar
  23. Quinlan JM, Yu W Y, Hornsey MA, Tosh D, Slack JM (2006). In vitro culture of embryonic mouse intestinal epithelium: cell differentiation and introduction of reporter genes. BMC Dev Biol 6: 24.CrossRefGoogle Scholar
  24. Turpen JB (1998). Induction and early development of the hematopoietic and immune systems in Xenopus. Dev Comp Immunol 22: 265–78.CrossRefGoogle Scholar
  25. Turpen JB, Kelley CM, Mead PE, Zon LI (1997). Bipotential primitive-definitive hematopoietic progenitors in the vertebrate embryo. Immunity 7: 325–34.CrossRefGoogle Scholar
  26. Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D (1997). Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7: 335–44.CrossRefGoogle Scholar
  27. Zaehres H, Daley GQ (2006). Transgene expression and RNA interference in embryonic stem cells. Methods Enzymol 420: 49–64.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Anna-Lila Kaushik
    • 1
  • Sébastien J. D. Giroux
    • 1
  • Michèle Klaine
    • 1
  • Ali Jalil
    • 1
  • Yann Lécluse
    • 1
  • Isabelle Godin
    • 1
  1. 1.INSERMU790, and Institut Gustave RoussyVillejuifFrance

Personalised recommendations