Retinal Fiber Tracing by In Ovo Electroporation

  • Hidekiyo Harada
  • Harukazu Nakamura

Axonal tracing techniques are the fundamentals for the investigation of neural circuit formation. In ovo electroporation system allows us to transfect a gene of interest to the desired place in chick embryos (Odani et al., 2008). Recently, Tol2 transposase element, which was originally found in medaka fish (Koga et al., 1996), has been adapted to an in ovo electroporation system (Niwa et al., 1991; Kawakami et al., 1998, 2000, 2004a, 2004b; Kawakami & Noda, 2004; Kawakami, 2005, 2007; Sato et al., 2007). This system assures the integration of the transgene into the genome by electroporation (Niwa et al., 1991; Sato et al., 2007). We applied this system for tracing retinal fibers (Harada et al., 2008). In this chapter, we demonstrate the method of tracing retinal fibers from both small and large groups of the retinal ganglion cell (RGC) with transposon-mediated gene transfer by in ovo electroporation to chick embryos.


Chick Embryo Optic Tectum Otic Vesicle Optic Vesicle Medaka Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Callahan, C. A., Thomas, J. B. (1994). Tau-beta-galactosidase, an axon-targeted fusion protein.Proc Natl Acad Sci U S A 91, 5972–5976.CrossRefGoogle Scholar
  2. Hamburger, V., Hamilton, H. L. (1992). A series of normal stages in the development of the chick embryo. (1951). Dev Dyn 195, 231–272.Google Scholar
  3. Harada, H., Takahashi, Y., Kawakami, K., Ogura, T., Nakamura, H. (2008). Tracing of retinal fiber trajectory with a method of transposon-mediated genomic integration in chick embryo. Dev Growth Differ, 50, 97–702.CrossRefGoogle Scholar
  4. Katahira, T., Sato, T., Sugiyama, S., Okafuji, T., Araki, I., Funahashi, J., Nakamura, H. (2000).Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum. Mech Dev 91, 43–52.CrossRefGoogle Scholar
  5. Kawakami, K. (2005). Transposon tools and methods in zebrafish. Dev Dyn 234, 244–254.CrossRefGoogle Scholar
  6. Kawakami, K. (2007). Tol2: A versatile gene transfer vector in vertebrates. Genome Biol 8 Suppl 1, S7.CrossRefGoogle Scholar
  7. Kawakami, K., Noda, T. (2004). Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics 166, 895–899.CrossRefGoogle Scholar
  8. Kawakami, K., Koga, A., Hori, H., Shima, A. (1998). Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 225, 17–22.CrossRefGoogle Scholar
  9. Kawakami, K., Shima, A., Kawakami, N. (2000). Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97, 11403–11408.CrossRefGoogle Scholar
  10. Kawakami, K., Imanaka, K., Itoh, M., Taira, M. (2004a). Excision of the Tol2 transposable element of the medaka fish Oryzias latipes in Xenopus laevis and Xenopus tropicalis. Gene 338,93–98.CrossRefGoogle Scholar
  11. Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., Mishina, M. (2004b).A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7, 133–144.CrossRefGoogle Scholar
  12. Koga, A., Suzuki, M., Inagaki, H., Bessho, Y., Hori, H. (1996). Transposable element in fish. Nature 383, 30.CrossRefGoogle Scholar
  13. Miyawaki, A. (2005). Innovations in the imaging of brain functions using fluorescent proteins.Neuron 48, 189–199.CrossRefGoogle Scholar
  14. Moriyoshi, K., Richards, L. J., Akazawa, C., O'Leary, D. D., Nakanishi, S. (1996). Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP. Neuron 16, 255–260.CrossRefGoogle Scholar
  15. Niwa, H., Yamamura, K., Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199.CrossRefGoogle Scholar
  16. Odani, N., Ito, K., Nakamura, H. (2008). Electroporation as an efficient method of gene transfer. Dev Growth Differ 50, 443–448.CrossRefGoogle Scholar
  17. Sato, Y., Kasai, T., Nakagawa, S., Tanabe, K., Watanabe, T., Kawakami, K., Takahashi, Y. (2007). Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305, 616–624.CrossRefGoogle Scholar
  18. Suemori, H., Kadodawa, Y., Goto, K., Araki, I., Kondoh, H., Nakatsuji, N. (1990). A mouse embryonic stem cell line showing pluripotency of differentiation in early embryos and ubiquitous beta-galactosidase expression. Cell Differ Dev 29, 181–186.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Department of Molecular Neurobiology, Graduate School of Life Sciences and Institute of Development, Aging and CancerTohoku UniversityAoba-kuJapan

Personalised recommendations