Skip to main content

Investigating Visual Perception and Cognition in Chimpanzees (Pan troglodytes) Through Visual Search and Related Tasks: From Basic to Complex Processes

  • Chapter

Abstract

Our visual environment is filled with an abundance of objects. When we see these objects, our visual system initially processes their features in a parallel manner and then integrates these features into objects using selective attention. It has been about 20 years since Treisman first proposed this “feature integration theory” (Treisman and Gelade 1980). Visual search and texture segregation tasks have revealed many interesting phenomena directly related to the feature integration theory: “pop-out”, search asymmetry, conjunction search, etc. Based on these findings, this theory was modified (Treisman and Sato 1990), and alternative models have also been proposed (e.g., guided search models, Wolfe 1994a; Wolfe et al. 1989).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahissar M, Hochstein S (1996) Learning pop-out detection: specificities to stimulus characteristics. Vision Res 36:3487–3500

    Article  PubMed  CAS  Google Scholar 

  • Aks DJ, Enns JT (1992) Visual search for direction of shade is influenced by apparent depth. Percept Psychophys 52:63–74

    PubMed  CAS  Google Scholar 

  • Allan SE, Blough DS (1989) Feature-based search asymmetries in pigeons and humans. Percept Psychophys 46:456–464

    PubMed  CAS  Google Scholar 

  • Berlucchi G, Crea F, di-Stefano M, Tassinari G (1977) Influence of spatial stimulus-response compatibility on reaction time of ipsilateral and contralateral hand to lateralized light stimuli. J Exp Psychol Hum Percept Perform 3:505–517

    Article  PubMed  CAS  Google Scholar 

  • Blake R (1993) Cats perceive biological motion. Psychol Sci 4:54–57

    Article  Google Scholar 

  • Blough DS (1977) Visual search in the pigeon: hunt and peck method. Science 196:1013–1014

    Article  PubMed  CAS  Google Scholar 

  • Blough DS (1979) Effects of the number and form of stimuli on visual search in the pigeon. J Exp Psychol Anim Behav Process 5:211–223

    Article  PubMed  CAS  Google Scholar 

  • Blough DS (1989) Odd-item search in pigeons: display size and transfer effects. J Exp Psychol Anim Behav Process 15:14–22

    Article  PubMed  CAS  Google Scholar 

  • Blough DS (1992) Features of forms in pigeon perception. In: Honig WK, Fetterman JG (eds) Cognitive aspects of stimulus control. Erlbaum, Hillsdale, pp 263–277

    Google Scholar 

  • Blough DS, Blough PM (1997) Form perception and attention in pigeons. Anim Learn Behav 25:1–20

    Google Scholar 

  • Blough DS, Franklin JJ (1985) Pigeon discrimination of letters and other forms in texture displays. Percept Psychophys 38:523–532

    PubMed  CAS  Google Scholar 

  • Blough PM (1989) Attentional priming and visual search in pigeons. J Exp Psychol Anim Behav Process 15:358–365

    Article  PubMed  CAS  Google Scholar 

  • Bolster RB, Pribram KH (1993) Cortical involvement in visual scan in the monkey. Percept Psychophys 53:505–518

    PubMed  CAS  Google Scholar 

  • Bruce C (1982) Face recognition by monkeys: absence of inversion effect. Neuropsychologia 20:515–521

    Article  PubMed  CAS  Google Scholar 

  • Bruce V (1988) Recognising faces. Erlbaum, Hillsdale

    Google Scholar 

  • Bruce V, Young A (1986) Understanding face recognition. Br J Psychol 77:305–327

    PubMed  Google Scholar 

  • Cook RG (1992a) Acquisition and transfer of visual texture discriminations by pigeons. J Exp Psychol Anim Behav Process 18:341–353

    Article  Google Scholar 

  • Cook RG (1992b) Dimensional organization and texture discrimination in pigeons. J Exp Psychol Anim Behav Process 18:354–363

    Article  CAS  Google Scholar 

  • Cook RG, Cavoto KK, Cavoto BR (1996) Mechanisms of multidimensional grouping, fusion, and search in avian texture discrimination. Anim Learn Behav 24:150–167

    Google Scholar 

  • Deruelle C, Fagot J (1998) Visual search for global/local stimulus features in humans and baboons. Psychon Bull Rev 5:476–481

    Google Scholar 

  • Diamond R, Carey S (1986) Why faces are and are not special: an effect of expertise. J Exp Psychol: Gen 115:107–117

    Article  CAS  Google Scholar 

  • Dittrich WH, Lea SEG, Barrett J, Gurr PR (1998) Categorization of natural movements by pigeons: visual concept discrimination and biological motion. J Exp Anal Behav 70:281–299

    Article  PubMed  Google Scholar 

  • Dursteler MR, von der Heydt R (1992, November) Visual search strategies of monkey and man. Paper presented at the meeting of the Society of Neuroscience, Anaheim, CA

    Google Scholar 

  • Egeth HE, Virzi RA, Garbart H (1984) Searching for conjunctively defined targets. J Exp Psychol Hum Percept Perform 10:32–39

    Article  PubMed  CAS  Google Scholar 

  • Ellis HD (1986) Processes underlying face recognition. In: Bruyer R (ed) The neuropsychology of face perception and facial expression. Erlbaum, Hillsdale, pp 1–27

    Google Scholar 

  • Enns JT, Rensink RA (1990) Sensitivity to three-dimensional orientation in visual search. Psychol Sci 1:323–326

    Article  Google Scholar 

  • Fox R, McDaniel C (1982) The perception of biological motion by human infants. Science 218:486–487

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Kanazawa S (1994) Visual search in Japanese macaques. In: Research report of the 1992–1993 Grant-in-Aid for Scientific Research from the Monbusho (in Japanese). Inuyama, Japan, pp 12–20

    Google Scholar 

  • Fujita K, Ishikawa S, Tomonaga M, Matsuzawa T (1999) Development of initial knowledge in primate infants. In: Research report of the Grant-in-Aid for Scientific Research from the Monbusho (in Japanese). Tokyo, pp 59–66

    Google Scholar 

  • Gurnsey R, Browse RA (1989) Asymmetries in visual texture discrimination. Spat Vision 4:31–44

    Article  CAS  Google Scholar 

  • Hansen CH, Hansen RD (1988) Finding the face in the crowd: an anger superiority effect. J Personality Soc Psychol 54:917–924

    Article  CAS  Google Scholar 

  • Hasegawa R, Kato M, Mikami A (1997) Delayed visual search on a rhesus monkey (abstract only in Japanese). Primate Res 13:284

    Google Scholar 

  • He ZJ, Nakayama K (1992) Surfaces versus features in visual search. Nature 359:231–233

    Article  PubMed  CAS  Google Scholar 

  • Herman LM, Morrel-Samuels P, Pack AA (1990) Bottlenosed dolphin and human recognition of veridical and degraded video displays of an artificial gestural language. J Exp Psychol Gen 119:215–230

    Article  PubMed  CAS  Google Scholar 

  • Hopkins WD, Morris RD, Savage-Rumbaugh ES (1991) Evidence for asymmetrical hemispheric priming using known and unknown warning stimuli in two language-trained chimpanzees (Pan troglodytes). J Exp Psychol: Gen 120:46–56

    Article  CAS  Google Scholar 

  • Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14:201–211

    Google Scholar 

  • Johnston WA, Schwarting IS (1997) Novel popout: an enigma for conventional theories of attention. J Exp Psychol Hum Percept Perform 23:622–631

    Article  Google Scholar 

  • Kleffner DA, Ramachandran VS (1992) On the perception of shape from shading. Percept Psychophys 52:18–36

    PubMed  CAS  Google Scholar 

  • Kuehn SM, Jolicoeur P (1994) Impact of quality of the image, orientation, and similarity of the stimuli on visual search for faces. Perception 23:95–122

    Article  PubMed  CAS  Google Scholar 

  • Kuroshima H (1999, September) Comparison of search asymmetries between humans and pigeons. Paper presented at the 63rd annual meeting of the Japanese Psychological Association, Nagoya, Japan

    Google Scholar 

  • Mackay HA (1991) Conditional stimulus control. In: Iversen IH, Lattal KA (eds) Experimental analysis of behavior, Part 1. Elsevier, Amsterdam, pp 301–350

    Google Scholar 

  • Maylor EA, Hockey R (1985) Inhibitory component of externally controlled covert orienting in visual space. J Exp Psychol Hum Percept Perform 11:777–787

    Article  PubMed  CAS  Google Scholar 

  • Mikami A (1999) Analyses of brain mechanisms underlying the visual search behavior of primates. In: The Mitsubishi Foundation annual report 1998 (in Japanese). Tokyo, pp 257–259

    Google Scholar 

  • Miura K, Kawabata H (1999) Effects of relative orientation differences on the detection of shading information: tests with visual search tasks. Paper presented at the 63rd annual meeting of the Japanese Psychological Association, Nagoya, Japan

    Google Scholar 

  • Neely JH (1977) Semantic priming and retrieval from lexical memory: roles of inhibitionless spreading activation and limited-capacity attention. J Exp Psychol Gen 106:226–254

    Article  Google Scholar 

  • Nothdurft HC (1993) Faces and facial expressions do not pop out. Perception 22:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Olivers CNL, van der Helm PA (1998) Symmetry and selective attention: a dissociation between effortless perception and serial search. Percept Psychophys 60:1101–1116

    PubMed  CAS  Google Scholar 

  • Omori E (1997) Comparative study of visual perception using Johansson’s stimuli. In: Watanabe S, Chase S (eds) Pattern recognition in humans and animals. Keio University, Tokyo, pp 27–30

    Google Scholar 

  • Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. J Cogn Neurosci 6:99–116

    Article  Google Scholar 

  • Overman WA, Doty RW (1982) Hemispheric specialization displayed by man but not macaques for analysis of faces. Neuropsychologia 20:113–128

    Article  PubMed  Google Scholar 

  • Parr LA, Dove T, Hopkins WD (1998) Why faces may be special: evidence of the inversion effect in chimpanzees. J Cogn Neurosci 10:615–622

    Article  PubMed  CAS  Google Scholar 

  • Pashler H (1987) Target-distractor discriminability in visual search. Percept Psychophys 41:285–302

    Google Scholar 

  • Pineda JA, Nava C (1993) Event-related potentials in macaque monkey during passive and attentional processing of faces in a priming paradigm. Behav Brain Res 53:177–187

    Article  PubMed  CAS  Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25

    Article  PubMed  CAS  Google Scholar 

  • Posner MI, Snyder CCR (1975) Facilitation and inhibition in the processing of signals. In: Rabbitt PMA, Dornic S (eds) Attention and performance, V. Academic Press, New York, pp 669–682

    Google Scholar 

  • Ramachandran VS (1988) Perception of shape from shading. Nature 331:163–166

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld SA, Van Hoesen GW (1979) Face recognition in the rhesus monkey. Neuropsychologia 17:503–509

    Article  PubMed  CAS  Google Scholar 

  • Schneider W, Shiffrin RM (1977) Controlled and automatic human information processing. I. Detection, search, and attention. Psychol Rev 84:1–66

    Article  Google Scholar 

  • Shiffrin RM, Schneider W (1977) Controlled and automatic human information processing. II. Perceptual learning, automatic attending and a general theory. Psychol Rev 84:127–190

    Article  Google Scholar 

  • Sireteanu R, Rettenbach R (1995) Perceptual learning in visual search: fast, enduring, but, non-specific. Vision Res 35:2037–2043

    Article  PubMed  CAS  Google Scholar 

  • Spinelli D, Antonucci G, Goodenough DR, Pizzamiglio L, Zoccolotti P (1991) Psychological mechanisms underlying the rod-and-frame illusion. In: Wapner S, Demick J (eds) Field dependence-independence: cognitive style across the life span. Erlbaum, Hillsdale, pp 37–60

    Google Scholar 

  • Stins JF, Michaels CF (1997) Stimulus-target compatibility for reaching movements. J Exp Psychol Hum Percept Perform 23:756–767

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, S, Cavanagh P (1995) Facial organization blocks access to low-level features: an object inferiority effect. J Exp Psychol Hum Percept Perform 21:901–913

    Article  Google Scholar 

  • Tipper SP (1985) The negative priming effect: inhibitory priming by ignored objects. Q J Exp Psychol 37A:571–590

    Google Scholar 

  • Tipper SP, Lortie C, Baylis GC (1992) Selective reaching: evidence for action-centered attention. J Exp Psychol Hum Percept Perform 18:891–905

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga M (1993a) Use of multiple-alternative matching-to-sample in the study of visual search in a chimpanzee (Pan troglodytes). J Comp Psychol 107:75–83

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga M (1993b) A search for search asymmetry in chimpanzees (Pan troglodytes). Percept Motor Skills 76:1287–1295

    PubMed  CAS  Google Scholar 

  • Tomonaga M (1994a) How laboratory-raised Japanese monkeys (Macaca fuscata) perceive rotated photographs of monkeys: evidence for an inversion effect in face perception. Primates 35:155–165

    Article  Google Scholar 

  • Tomonaga M (1994b, October) Search asymmetry in the chimpanzee. II. Does a tilted line pop out among the vertical lines? Paper presented at the 58th annual meeting of the Japanese Psychological Association, Tokyo, Japan

    Google Scholar 

  • Tomonaga M (1995a) Visual search by chimpanzees (Pan): assessment of controlling relations. J Exp Anal Behav 63:175–186

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga M (1995b) Transfer of odd-item search performance in a chimpanzee (Pan troglodytes). Percept Motor Skills 80:35–42

    PubMed  CAS  Google Scholar 

  • Tomonaga M (1997a) Precuing the target location in visual searching by a chimpanzee (Pan troglodytes): effects of precue validity. Jpn Psychol Res 39:200–211

    Article  Google Scholar 

  • Tomonaga M (1997b) Search asymmetry in the chimpanzee. III (abstract only in Japanese). Jpn J Anim Psychol 47:200

    Article  Google Scholar 

  • Tomonaga M (1997c, September) Visual search for biological motion patterns in the chimpanzee. Paper presented at the 61st annual meeting of the Japanese Psychological Association, Nishinomiya, Japan

    Google Scholar 

  • Tomonaga M (1998a) Perception of shape from shading in chimpanzees (Pan troglodytes) and humans (Homo sapiens). Anim Cogn 1:25–35

    Article  Google Scholar 

  • Tomonaga M (1998b, October) Priming effects on the discrimination performance in the chimpanzees. Paper presented at the 62nd annual meeting of the Japanese Psychological Association, Koganei, Japan

    Google Scholar 

  • Tomonaga M (1998c) Visual search for biological motion patterns in the chimpanzee. II (Japanese abstract). Jpn J Anim Psychol 48:106

    Google Scholar 

  • Tomonaga M (1999a) Visual texture segregation by the chimpanzee (Pan troglodytes). Behav Brain Res 99:209–218

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga M (1999b) Inversion effect in perception of human faces in a chimpanzee (Pan troglodytes). Primates 40:417–438

    Article  Google Scholar 

  • Tomonaga M (1999c) Visual search for orientation of faces by a chimpanzee (Pan troglodytes) (in Japanese with English summary). Primate Res 15:215–229

    Google Scholar 

  • Tomonaga M, Itakura S, Matsuzawa T (1993) Superiority of conspecific faces and reduced inversion effect in face perception by a chimpanzee (Pan troglodytes). Folia Primatol 61:110–114

    Article  PubMed  CAS  Google Scholar 

  • Tong F, Nakayama K (1999) Robust representations for faces: evidence from visual search. J Exp Psychol Hum Percept Perform 25:1016–1035

    Article  PubMed  CAS  Google Scholar 

  • Treisman A (1985) Preattentive processing in vision. Comput Vision, Graphics, Image Process 31:156–177

    Article  Google Scholar 

  • Treisman A, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12:97–136

    Article  PubMed  CAS  Google Scholar 

  • Treisman A, Gormican S (1988) Feature analysis in early vision: evidence from search asymmetries. Psychol Rev 95:15–48

    Article  PubMed  CAS  Google Scholar 

  • Treisman A, Sato S (1990) Conjunction search revisited. J Exp Psychol Hum Percept Perform 16:459–478

    Article  PubMed  CAS  Google Scholar 

  • Treisman A, Schmidt H (1982) Illusory conjunctions in the perception of objects. Cogn Psychol 14:107–141

    Article  PubMed  CAS  Google Scholar 

  • Treisman A, Souther J (1985) Search asymmetry: a diagnostic for preattentive processing of separable features. J Exp Psychol Gen 114:285–310

    Article  PubMed  CAS  Google Scholar 

  • Treisman A, Cavanagh P, Fischer B, Ramachandran VS von der Heydt R (1990) Form perception and attention: striate cortex and beyond. In: Spillmann L, Werner JS (eds) Visual perception: the neurophysiological foundations. Academic Press, San Diego, pp 273–316

    Google Scholar 

  • Wang Q, Cavanagh P, Green M (1994) Familiarity and pop-out in visual search. Percept Psychophys 56:495–500

    PubMed  CAS  Google Scholar 

  • Wenderoth PM (1973) The effects of tilted outline frames and intersecting line patterns on judgments of vertical. Percept Psychophys 14:242–248

    Google Scholar 

  • Wilkinson F (1986) Visual texture segmentation in cats. Behav Brain Res 19:71–82

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson F (1990) Texture segmentation. In: Stebbins WC, Berkley MA (eds) Comparative perception, vol 2. Wiley, New York, pp 125–156

    Google Scholar 

  • Wolfe JM (1994a) Guided search 2.0: a revised model of visual search. Psychon Bull Rev 1:202–238

    Google Scholar 

  • Wolfe JM (1994b) Visual search in continuous, naturalistic stimuli. Vision Res 34:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Wolfe JM, Cave KR, Franzel SL (1989) Guided search: an alternative to the feature integration model for visual search. J Exp Psychol Hum Percept Perform 15:419–433

    Article  PubMed  CAS  Google Scholar 

  • Wright AA, Roberts WA (1996) Monkey and human face perception: inversion effects for human faces but not for monkey faces or scenes. J Cogn Neurosci 8:278–290

    Article  Google Scholar 

  • Yamaguchi MK, Fujita K (1999) Perception of biological motion by newly hatched chicks and quail. Perception 28(supplement):23–24

    Google Scholar 

  • Yin RK (1969) Looking at upside-down faces. J Exp Psychol 81:141–145

    Article  Google Scholar 

  • Young MP (1995) Open questions about the neural mechanisms of visual pattern recognition. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 463–474

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Tomonaga, M. (2008). Investigating Visual Perception and Cognition in Chimpanzees (Pan troglodytes) Through Visual Search and Related Tasks: From Basic to Complex Processes. In: Matsuzawa, T. (eds) Primate Origins of Human Cognition and Behavior. Springer, Tokyo. https://doi.org/10.1007/978-4-431-09423-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-09423-4_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-09422-7

  • Online ISBN: 978-4-431-09423-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics