Advertisement

Schnelle Algorithmen und hartnäckige Probleme

Chapter
  • 2k Downloads

Auszug

Die ersten elektronischen Computer waren vorrangig Maschinen, die eines besonders gut konnten: Schnell und fehlerfrei lange mathematische Berechnungen durchführen. Ihre ersten Einsatzgebiete — übrigens vor militärischem Hintergrund — waren die Berechnung physikalischer Eigenschaften von Flugkörpern und die Entschlüsselung geheimer Codes. Sie entlasteten damit Ingenieure und Mathematiker von als zu recht „mechanisch“ empfundenen Aufgaben, die viel Zeit in Anspruch nehmen und höchst fehleranfällig sind, und ermöglichten es, viel größere Instanzen desselben Problems als bisher anzugehen1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.3 Literatur zu Kapitel 1

  1. [ACG+99]_G. Ausiello, P. Crescenzi, G. Gambosi, V. Kamn, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation — Combinatorial Optimization Problems and Their Approximability Properties. Springer, Berlin, 1999.zbMATHGoogle Scholar
  2. [Bol98]
    B. Bollobás. Modern Graph Theory. Springer, New York, 1998.zbMATHGoogle Scholar
  3. [CLR90]
    T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, 1990.Google Scholar
  4. [Coo71]
    S. Cook. The complexity of theorem proving procedures. In Proc. 3rd ACM Symposium on Theory of Computing (STOC), pages 151–158, 1971.Google Scholar
  5. [GJ79]
    M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the Theory of NP-Completeness. Freeman, New York, 1979.zbMATHGoogle Scholar
  6. [GKP95]
    R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd edition, 1995.Google Scholar
  7. [HF04]
    D. Harel and Y. Feldman. Algorithmics — The Spirit of Computing. Pearson, 3rd edition, 2004.Google Scholar
  8. [Hoc96]
    D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS, Boston, 1996.Google Scholar
  9. [Hro0l]
    J. Hromkovič. Algorithmics for Hard Problems. Springer, Berlin, 2001.Google Scholar
  10. [KMR93]
    D. Karger, R. Motwani, and G. D. S. Ramkumar. On approximating the longest path in a graph. In Proc. 3rd Workshop on Algorithms and Data Structures (WADS), pages 421–132, 1993.Google Scholar
  11. [Knu97]
    D. E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-Wesley, Reading, Massachusetts, 3rd edition, 1997.Google Scholar
  12. [Moo65]
    G.E. Moore. Cramming more components onto integrated circuits. Electronics, 38:114–117, 1965. Reprinted in Proc. of the IEEE, Vol. 86(l):82–85, 1998.Google Scholar
  13. [MPS98]
    E. W. Mayr, H. J. Prömel, and A. Steger, editors. Lectures on Proof Verification and Approximation Algorithms. Springer, Berlin, 1998.zbMATHGoogle Scholar
  14. [MS79]
    B. Monien and E. Speckenmeyer. 3-Satisfiability is testable in O(1.62r) steps. Technischer Bericht Nr. 3, Universität-GH Paderborn, 1979.Google Scholar
  15. [QW06]
    J. Qian and C. A. Wang. How much precision is needed to compare two sums of square roots? Information Processing Letters, 100:194–198, 2006.CrossRefMathSciNetGoogle Scholar
  16. [Sip92]
    M. Sipser. The history and status of the P versus NP question. In Proceedings of the 24th ACM Symposium on Theory of Computing (STOC), pages 603–618, 1992.Google Scholar
  17. [SS01]
    T. Schickinger and A. Steger. Diskrete Strukturen, Band 2: Wahrscheinlichkeitstheorie und Statistik. Springer, Berlin, 2001.Google Scholar
  18. [Ste0l]
    A. Steger. Diskrete Strukturen, Band 1: Kombinatorik — Graphentheorie — Algebra. Springer, Berlin, 2001.Google Scholar
  19. [Vaz0l]
    V. V. Vazirani. Approximation Algorithms. Springer, Berlin, 2001.Google Scholar

Copyright information

© B.G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden 2006

Personalised recommendations