The complexity of data warehouse models based on the entity-relationship-model was one of the biggest driving forces behind multidimensional modelling. Designed models should be easily understood by a business expert and easily analyzed by the final user. Nevertheless, the evolution of the dimensional paradigm has showed that the business world is complex and it is necessary to introduce new concepts to the models to allow a greater level of representation. These include bridge tables, heterogeneous dimensions and factless fact tables (Kimball, Ross 2002). As a result, the designed model lacks the desired simplicity and does not yet guarantee the representation of all the semantics of the domain. This paper explores an alternative design of data warehouses that allows the creation of a model that reflects in a greater proportion the semantic of the business world and that can be exploited by the final user through different analysis tools. The alternative, based on XBRL Dimensional Taxonomies (XDT), is shown through a comparison with a dimensional model and the level of semantic representation. We explore all the limitations and ease of use derived from this standard reporting language, eXtensible Business Reporting Language (XBRL). The objective is to show a dimensional and a XDT design and stressing out the semantic richness of each approach. In order to do so, the article will explore briefly the background of a dimensional understanding of a problem domain in the second section. Then it will show dimensional XBRL as a more semantically approach to model a dimensional reality in the third section. To show this, the fourth section contains an example that will be applied in a real case study.


Data Warehouse Multidimensional Model Multidimensional Data Primary Item Star Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer, A.; Günzel, H. (2001): Data-Warehouse-Systeme. Architektur, Entwicklung, Anwendung, 2. Edition. dpunkt Verlag, Heidelberg.Google Scholar
  2. Bulos, D. (June 1996): A New Dimension, in: Database Programming & Design, Vol. 9, No. 6, pp. 33–38.Google Scholar
  3. Chamoni, P. (1998): Ausgewählte Verfahren des Data Mining. In: Chamoni, P.; Gluchowski, P. (ed.): Analytische Informationssysteme. Data Warehouse, On-Line Analytical Processing, Data Mining, Springer, Berlin [u. a.],, pp. 355–373.Google Scholar
  4. Chamoni, P.; Gluchowski, P. (Ed) (1999):Analytische Informationssysteme. Data Warehouse, On-Line Analytical Processing, Data Mining, 2nd edition. Springer, Berlin [et al.].Google Scholar
  5. Codd, E. F. (June 1970): A Relational Model for Large Shared Data Banks, in: Communications of the ACM, Volume 13, Nr. 6, pp. 377–387.CrossRefGoogle Scholar
  6. Devlin, B. (1997): Data Warehouse — from Architecture to Implementation. Addison Wesley, Reading (Mass.) [et al.].Google Scholar
  7. Fenn, J.; Linden, A. (2005): Gartner’s Hype Cycle Special Report for 2005, Gartner Inc,, downloaded on 2006-07-19.
  8. Gabriel, R.; Gluchowski, P.(1998): Grafische Notationen für die semantische Modellierung multidimensionaler Datenstrukturen in Management Support Systemen, in: Wirtschaftsinformatik, Nr. 40, pp. 493–502.Google Scholar
  9. Gluchowski, P. (1997): Data Warehouse. In: Informatik-Spektrum 20. Jahrgang, Heft 1, pp. 48–49.CrossRefGoogle Scholar
  10. Hernández-Ros, I., Wallis H. (2006): XBRL Dimensions 1.0 Candidate Recommendation, dated 2006-04-26, XBRL International,, downloaded on 2006-07-19.
  11. Holthuis, J. (1999): Der Aufbau von Data Warehouse-Systemen-Konzeption, Datenmodellierung, Vorgehen, 2. Auflage, DUV, Wiesbaden.Google Scholar
  12. Inmon, W. H. (2002): Building the Data Warehouse, 3rd edition. Wiley, New York [et al.].Google Scholar
  13. Kimball, R.; Ross, M. (2002): The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd edition, John Wiley & Sons, Inc.Google Scholar
  14. Lehner, W. (2003): Datenbanktechnologie für Data-Warehouse-Systeme. Konzepte und Methoden. dpunkt Verlag, Heidelberg.Google Scholar
  15. Lusti, M. (2002): Data Warehousing und Data Mining. Eine Einführung in entscheidungsorientierte Systeme. 2. Edition. Springer Verlag, Berlin [et al.].Google Scholar
  16. Nußdorfer, R. (1998): Neue Anforderung an die Datenmodellierung. E/R-Modellierung im Jungbrunnen, in: Datenbank Focus, Heft 10, pp. 16–19.Google Scholar
  17. Poe, V.; Klauer, P.; Brobst, S. (1998): Building a data warehouse for decision support, 2nd edition, Upper Saddle River.Google Scholar
  18. Raden, N. (1996): Star Schema 101. White Paper, Archer Decision Sciences Inc., Santa Barbara CA 1996,, downloaded on 2006-08-28.Google Scholar
  19. Schlenker, U. (1998): Datenmodellierung für das Data Warehouse-Vergleich und Bewertung konzeptioneller und logischer Methoden, Juni,, downloaded 2006-07-07.
  20. Schinzer, H.-D.; Bange, C. (1999): Werkzeuge zum Aufbau analytischer Informationssysteme, in: Chamoni, P.; Gluchowski, P. (Hrsg.): Analytische Informationssysteme-Data Warehouse, On-Line Analytical Processing, Data Mining, 2nd edition. Springer, Berlin, pp. 45–74.Google Scholar

Copyright information

© Deutscher Universitäts-Verlag | GWV Fachverlage GmbH, Wiesbaden 2007

Authors and Affiliations

  • Carsten Felden
    • 1
  1. 1.Technische Universität Bergakademie FreibergSachsenGermany

Personalised recommendations