Advertisement

Matrices in Shop Scheduling Problems

  • Heidemarie Bräsel

Keywords

Completion Time Precedence Constraint Open Shop Makespan Minimization Sequence Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Auszug

Es ist für mich eine ehrenvolle Aufgabe, einen Beitrag für dieses Buch einzubringen. Gleichzeitig ist es ein herzliches Dankeschön für Herrn Prof. Klaus Neumann für seine wissenschaftlichen Arbeiten, deren Ergebnisse ich sehr gern nutze, und für seine Unterstützung und sein stetes Interesse an der Entwicklung unserer Forschungsgruppe. Ich verbinde dies mit alien guten Wünschen für einen gesunden Ruhestand der Familie Neumann, der - dessen bin ich mir sicher - öfter auch in einen Unruhestand ausarten wird.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bräsel H (1990) Latin Rectangle in Scheduling Theory. Habilitation (in German), University Magdeburg, GermanyGoogle Scholar
  2. [2]
    Bräsel H, Harborth M, Tautenhahn T, Willenius P (1999) On the set of solutions of the open shop problem. Annals of Operations Research 92:241–263CrossRefGoogle Scholar
  3. [3]
    Bräsel H, Harborth M, Tautenhahn T, Willenius P (1999) On the hardness of the classical job shop problem. Annals of Operations Research 92:265–279CrossRefGoogle Scholar
  4. [4]
    Bräsel H, Hennes H (2004) On the open-shop problem with preemption and minimizing the average completion time. European Journal of Operational Research 157:607–619CrossRefGoogle Scholar
  5. [5]
    Bräsel H, Kleinau M (1992) On the number of feasible schedules of the open-shop-problem — An application of special Latin rectangles. Optimization 23:251–260CrossRefGoogle Scholar
  6. [6]
    Bräsel H, Kleinau M (1996) New steps in the amazing world of sequences and schedules. Mathematical Methods of Operations Research 43:195–214CrossRefGoogle Scholar
  7. [7]
    Bräsel H, Kluge D, Werner F (1994) A polynomial algorithm for the nmO,t ij = 1, treeC max open-shop problem. European Journal of Operational Research 72:125–134CrossRefGoogle Scholar
  8. [8]
    Bräsel H, Kluge D, Werner F (1995) A polynomial algorithm for an open shop problem with unit processing times and tree constraints. Discrete Applied Mathematics 59:11–21CrossRefGoogle Scholar
  9. [9]
    Bräsel H, Kluge D, Werner F (1996) Polynomial time algorithms for special open shop problems with precedence constraints and unit processing times. RAIRO Operations Research 30:65–79Google Scholar
  10. [10]
    Bräsel H, Tautenhahn T, Werner F (1993) Constructive heuristic algorithms for the open shop problem. Computing 51:95–110CrossRefGoogle Scholar
  11. [11]
    Brucker P (2001) Scheduling Algorithms, Third Edition. Springer Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  12. [12]
    Dhamala TN (2002) Shop Scheduling Solution-Spaces with Algebraic Characterizations. Dissertation, Shaker Verlag, MathematicsGoogle Scholar
  13. [13]
    Graham RE, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 4:287–326CrossRefGoogle Scholar
  14. [14]
    Harborth M (1999) Structural Analysis of Shop Scheduling Problems: Counting Problems, Potential Optimality and New Enumeration Algorithms. Dissertation (in German), GCA-Verlag, Forschen und Wissen: MathematikGoogle Scholar
  15. [15]
    Sotskow Y, Tautenhahn T, Werner F (1999) On the application of insertion techniques for job shop problems with setup times. RAIRO 33(2):209–245CrossRefGoogle Scholar
  16. [16]
    Tautenhahn T (1993) Open-Shop Problems with Unit Processing Times. Dissertation (in German), University MagdeburgGoogle Scholar
  17. [17]
    Tautenhahn T (1996) On unit-time open shops with additional restrictions. ZOR 43(2):215–231Google Scholar
  18. [18]
    Werner F, Winkler A (1995) Insertion techniques for the heuristic solution of the job shop problem. Discrete Applied Mathematics 58(2):191–211CrossRefGoogle Scholar
  19. [19]
    Willenius P (2000) Irreducibility Theory for Shop Scheduling Problems. Dissertation (in German), Shaker Verlag, MathematicsGoogle Scholar

Copyright information

© Deutscher Universitäts-Verlag/GWV Fachverlage GmbH, Wiesbaden 2006

Authors and Affiliations

  • Heidemarie Bräsel
    • 1
  1. 1.Institut für Algebra und GeometrieOtto-von-Guericke-UniversitätMagdeburg

Personalised recommendations