Advertisement

Abstract

The preceding chapters identified relevant competencies which are expected to impact the development of new ventures. In order to get a more precise understanding of the development of NTBFs, to test the expected relationships, and to analyze the magnitude of the impact of different competencies on the different success measures in different stages of development, an empirical study was conducted. The research design of the study, the methodology, and the operationalization of the constructs are presented next.

Keywords

Partial Little Square Research Process Latent Construct Average Variance Extract Indicator Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 476.
    Churchill, G.A.j., 1979.Google Scholar
  2. 482.
    Müller, T.A., 2003.Google Scholar
  3. 483.
    Chandler, G.N. and Jansen, E., 1992; Chandler, G.N. and Hanks, S.H., 1994; Erpenbeck, J. and von Rosenstiel, L., 2003b; Baron, R.A. and Markman, G.D., 2003.Google Scholar
  4. 486.
    Miller, T.W. and Dickson, P.R., 2001, 139.Google Scholar
  5. 487.
    Becker, J.U., 2004, 100–103.Google Scholar
  6. 490.
    Steenkamp, J.-B. and Baumgartner, H., 2000, 195–196; Bagozzi, R.P., 1994c; Baumgartner, H. and Homburg, C., 1996, 140–141.Google Scholar
  7. 491.
    From a strict knowledge-theoretical perspective questions arise concerning the possibility to empirically prove hypotheses. Homburg, C. and Hildebrandt, L., 1998, 17; Popper, K.R., 2000; Popper, K.R., 2002.Google Scholar
  8. 493.
    Erpenbeck, J. and von Rosenstiel, L., 2003b.Google Scholar
  9. 494.
    Diamantopoulos, A. and Winkelhofer, H.M., 2001.Google Scholar
  10. 495.
    Chin, W.W., 1998a, 9; Bagozzi, R.P., 1994b, 333.Google Scholar
  11. 496.
    Bagozzi, R.P., 1994c, 331.Google Scholar
  12. 497.
    Translation from Hahn, C.H., 2002, 107.Google Scholar
  13. 498.
    Herrmann, A., et al., 2004, 6.Google Scholar
  14. 499.
    Fornell, C. and Cha, J., 1994, 2; Fornell, C. and F.L., B., 1982; Herrmann, A., et al., 2004, 6.Google Scholar
  15. 500.
    Hahn, C.H., 2002, 107; Chin, W.W., 1998b; Herrmann, A., et al., 2004, 8–9.Google Scholar
  16. 501.
    Fornell, C. and F.L., B., 1982.Google Scholar
  17. 502.
    The superficial observation of this fundamental difference let to problematic construct specifications and the erroneous application of statistical methods. Eggert, A. and Fassott, G., 2003.Google Scholar
  18. 503.
    Herrmann, A., et al., 2004; Fornell, C. and F.L., B., 1982; Chin, W.W., 1998a; Bagozzi, R.P., et al., 1991; Bookstein, F.L., 1980.Google Scholar
  19. 505.
    Wold, H., 1982, 25.Google Scholar
  20. 506.
    Kern, E., 1990, 87.Google Scholar
  21. 507.
    Hahn, C.H., 2002, 103.Google Scholar
  22. 508.
    Lohmüller, J.B., 1989, 42.Google Scholar
  23. 509.
    For a extensive description of the PLS approach refer to Fornell, C. and Cha, J., 1994.Google Scholar
  24. 510.
    Anderson, J.C. and Gerbing, D.W., 1982, 453.; Fornell, C. and Larcker, D., 1981, 45; Hulland, J., 1999, 20.Google Scholar
  25. 511.
    Bagozzi, R.P., 1994a.Google Scholar
  26. 512.
    E.g. Hulland, J., 1999; Fornell, C. and Larcker, D., 1981; Edwards, J.R. and Bagozzi, R.P., 2000; Bagozzi, R.P., et al., 1991.Google Scholar
  27. 513.
    Churchill, G.A.j., 1979, 65.Google Scholar
  28. 514.
    Hulland, J., 1999, 198.Google Scholar
  29. 515.
    Hulland, J., 1999, 198.Google Scholar
  30. 516.
    Hair, J.F., et al., 1998, 111.Google Scholar
  31. 517.
    Jöreskog, K.G. and Sörbom, D.S., 1989, 41.Google Scholar
  32. 518.
    Bagozzi, R.P. and Baumgartner, H., 1994, 404.Google Scholar
  33. 519.
    Churchill, G.A.j., 1979, 68.Google Scholar
  34. 520.
    Cronbach, L.J., 1951.Google Scholar
  35. 521.
    Homburg, C. and Giering, A., 1996, 8.Google Scholar
  36. 522.
    Backhaus, K., et al., 2000; Nunnally, J.C., 1978, 245.Google Scholar
  37. 523.
    Homburg, C. and Giering, A., 1996, 8, Cronbach, L.J., 1951.Google Scholar
  38. 524.
    Peterson, R.A., 1994, 389.Google Scholar
  39. 525.
    Schlaak, T.M., 1999, 153; Peterson, R.A., 1994. Peter, S.I., 1997, 180 sets the minimum requirement to.4.Google Scholar
  40. 526.
    Nunnally, J.C., 1978, 279.Google Scholar
  41. 527.
    Churchill, G.A.j., 1979, 68.Google Scholar
  42. 528.
    Fornell, C. and Larcker, D., 1981, 45.Google Scholar
  43. 529.
    Fornell, C. and Cha, J., 1994, 69.Google Scholar
  44. 530.
    Fornell, C. and Larcker, D., 1981, 45–46.Google Scholar
  45. 531.
    Bortz, J., 1984, 138.Google Scholar
  46. 532.
    Homburg, C. and Giering, A., 1996.Google Scholar
  47. 533.
    Homburg, C. and Giering, A., 1996, 11–12; Homburg, C. and Baumgartner, H., 1995.Google Scholar
  48. 534.
    For a detailed description of explorative factor analysis refer to Backhaus, K., et al., 2000.Google Scholar
  49. 535.
    In this work principal component analysis is applied for factor extraction in order to achieve a comprehensive reflection of the original data. Backhaus, K., et al., 2000, 285. The varimax rotation procedure was used to facilitate the interpretability of the factor matrix.Google Scholar
  50. 536.
    Homburg, C., 2000.Google Scholar
  51. 537.
    Peter, J.P., 1981, 136; Bagozzi, R.P., 1980, 129; Bagozzi, R.P. and Phillips, L.W., 1982, 468.Google Scholar
  52. 538.
    Schnell, R., et al., 1999, 153–155; Peter, J.P., 1981, 136.Google Scholar
  53. 539.
    Hulland, J., 1999, 199.Google Scholar
  54. 540.
    Homburg, C. and Giering, A., 1996, 7; Hulland, J., 1999, 199.Google Scholar
  55. 541.
    Bagozzi, R.P. and Phillips, L.W., 1982, 469.Google Scholar
  56. 542.
    Hulland, J., 1999, 199–200.Google Scholar
  57. 543.
    Fornell, C. and Larcker, D., 1981.Google Scholar
  58. 544.
    Bagozzi, R.P., 1994a, 25.Google Scholar
  59. 545.
    Backhaus, K., et al., 2000, Homburg, C. and Baumgartner, H., 1995; Marsh, H.W., et al., 1988.Google Scholar
  60. 546.
    Marsh, H.W., et al., 1988, 392.Google Scholar
  61. 547.
    Homburg, C. and Giering, A., 1996.Google Scholar
  62. 548.
    Homburg, C. and Baumgartner, H., 1995.Google Scholar
  63. 549.
    Steiger, J., 1990, 175.Google Scholar
  64. 550.
    Hair, J.F., et al., 1998, 656.Google Scholar
  65. 551.
    Homburg, C. and Baumgartner, H., 1995.Google Scholar
  66. 552.
    Homburg, C. and Baumgartner, H., 1995; Müller, T.A., 2003.Google Scholar
  67. 553.
    The downward bias refers to a deterioration of the AGFI when sample size is small in relation to the degree of freedom of the model. Talke, K., 2005, 184. Sharma, S., 1996, 159; Morgan, R.M. and Hunt, S.D., 1994, 30.Google Scholar
  68. 554.
    Adoption from Homburg, C. and Baumgartner, H., 1995; Herrmann, A., et al., 2004; Hulland, J., 1999.Google Scholar
  69. 555.
    Homburg, C. and Baumgartner, H., 1995, 153; Nunnally, J.C., 1978; Hulland, J., 1999.Google Scholar
  70. 556.
    With respect to the actual application of PLS many researchers use only a selective set of criteria to evaluate their reflective measurement model. Herrmann, A., et al., 2004, Ringle, C.M., 2004, Becker, J.U., 2004, 1.This research intends to comply with all the presented criteria.Google Scholar
  71. 557.
    Diamantopoulos, A., 1999, 453–454.Google Scholar
  72. 558.
    Chin, W.W., 1998b, 306.Google Scholar
  73. 559.
    Götz, O. and Liehr-Gobbers, K., 2004, 17.Google Scholar
  74. 560.
    Diamantopoulos, A. and Winkelhofer, H.M., 2001.Google Scholar
  75. 561.
    In case of high multi-collinearity the influence of an indicator can not be evaluated and can lead to distorted parameters. Diamantopoulos, A. and Winkelhofer, H.M., 2001, 272.Google Scholar
  76. 562.
    Götz, O. and Liehr-Gobbers, K., 2004, 19. In this research the correlation of formative constructs does not exceed.4. Only the correlation between the two success measures is in the.6 range.Google Scholar
  77. 563.
    Gujaratti, D.N., 2003, 362; Götz, O. and Liehr-Gobbers, K., 2004, 20.Google Scholar
  78. 564.
    Belsley, D.A., et al., 1980, 117–118.Google Scholar
  79. 565.
    Götz, O. and Liehr-Gobbers, K., 2004, 21. For a discussion of the condition index please refer to Hair, J.F., et al., 1998, 220–221.Google Scholar
  80. 566.
    For a presentation on the bootstrap-method refer to Efron, B. and gong, G., 1983.Google Scholar
  81. 567.
    Anderson/Gerbing present two additional measures to evaluate content validity of indicators used in formative constructs in pre-tests environments. To calculate the two indicators experts or members of the pre-test sample are requested to classify arbitrarily presented indicators to the pre-defined constructs. Two indices are calculated based on the accuracy of this classification. Anderson, J.C. and Gerbing, D.W., 1982, 734. In this research the recurrence on used scales, the participation of different research experts in the respective fields and the described pre-test were intended to serve the same purpose.Google Scholar
  82. 568.
    Fornell, C. and Cha, J., 1994, 72; Fornell, C. and F.L., B., 1982, 450; Herrmann, A., et al., 2004, 26.Google Scholar

Copyright information

© Deutscher Universitäts-Verlag | GWV Fachverlage GmbH, Wiesbaden 2007

Personalised recommendations