Advertisement

Reducing domain level scenarios to test component-based software

  • Oliver Skroch

Abstract

Higher-order black box software tests can be used for checking independent end-user domain requirements. This has become an issue of increasing importance with compositional reuse of software artifacts. The following research article elaborates on a method for deriving testable scenarios directly from a customer domain model by abstraction, reduction, and inclusion for critical coverage. The resulting linear (i.e., non-branching) scenarios can be extended to serve as references or oracles for testing the specifications of components and services offered by suppliers.

Keywords

Domain Model Business Rule Object Management Group Domain Level Test Oracle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alpar, P.; Grob, H.; Weimann, P.; Winter, R. (2008), Anwendungsorientierte Wirschaftsinformatik: Strategische Planung, Entwicklung und Nutzung von Informations– und Kommunikationssystemen, 5th edn, Vieweg, Wiesbaden.Google Scholar
  2. Ortner, E. (1998), “Ein Multipfad–Vorgehensmodell für die Entwicklung von Informationssystemen – dargestellt am Beispiel von Workflow–Management Anwendungen”, Wirtschaftsinformatik, 40 (4): 329–337.Google Scholar
  3. Overhage, S. (2006), “Vereinheitlichte Spezifikation von Komponenten: Grundlagen, UnSCom Spezifikationsrahmen und Anwendung”, Dissertation, UniversitätAugsburg, Augsburg.Google Scholar
  4. Sommerville,I. (2001), Software engineering, 6th edn, Pearson, Munich.Google Scholar
  5. Turowski, K. (2003), Fachkomponenten: Komponentenbasierte betriebliche Anwendungssysteme, Shaker, Aachen.Google Scholar

Copyright information

© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2010

Authors and Affiliations

  • Oliver Skroch

There are no affiliations available

Personalised recommendations