Advertisement

Analysis and results

Abstract

The chemical industry comprises a multitude of segments with an estimated 70,000 different product lines: for example, paints and coatings, fertilizers, pesticides, herbicides and other agricultural chemicals, Pharmaceuticals, cosmetics, detergents, solvents, composites, plastics, synthetic fibers and rubbers, inks, photographic supplies, and many others633. This plethora of different products is manufactured by more than 1,000 large and medium-sized companies, let alone countless small firms634. Along with a total sales volume of about €1,476 billion (excluding pharmaceuticals) worldwide in 2005635, the chemical industry is one of the largest, most complex, and most diversified industries at all. Due to the enormous diversity of products, the chemical industry supplies virtually into every other industry636. Having its starting point in the petrochemicals sector637, chemicals form the building blocks at every level of production and consumption in many industries. Therefore, only 25 percent of the chemical output goes directly to the consumer, which is the main reason for the industry’s relative invisibility638. The chemical industry is further highly fragmented with the top ten chemical firms accounting for only 18 percent of the total market639.

Keywords

Intrinsic Motivation Business Unit Extrinsic Motivation Specialty Chemical Technological Competence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

o

  1. Landau, R. (1998). The process of innovation in the chemical industry. In: Landau, R., Arora, A. and Rosenberg, N. (Eds.). Chemicals and long-term economic growth: insights from the chemical industry. New York: 1.Google Scholar
  2. Hofmann, K. and Budde, F. (2006). Today’s chemical industry: which way is up? In: Budde, F., Felcht, U.-H. and Frankemölle, H. (Eds.). Value creation: strategies for the chemical industry. Weinheim: 1.Google Scholar
  3. Cefic (2006). Facts and figures, December 2006. p. 1.Google Scholar
  4. Leker, J. and Herzog, P. (2004). Marketing in der chemischen Industrie. In: Backhaus, K. and Voeth, M. (Eds.). Handbuch Industriegütermarketing. Wiesbaden: 1173.Google Scholar
  5. Hamelau, N. (2004). Strategische Wettbewerbsanalyse: eine konzeptionelle Umsetzung am Beispiel der Spezialchemie. Wiesbaden. p. 235.Google Scholar
  6. Runge, W. (2006). Innovation, research and technology intelligence in the chemical industry: integrated business, technical and systems approaches. Stuttgart. p. 54.Google Scholar
  7. Arora, A., Landau, R. and Rosenberg, N. (1998). Introduction. In: Arora, A., Landau, R. and Rosenberg, N. (Eds.). Chemicals and the long-term economic growth: insights from the chemical industry. New York: 6.Google Scholar
  8. Hofmann, K. and Budde, F. (2006). Today’s chemical industry: which way is up? In: Budde, F., Felcht, U.-H. and Frankemölle, H. (Eds.). Value creation: strategies for the chemical industry. Weinheim: 5.Google Scholar
  9. Leker, J. and Rühmer, S. (2003). Der Einfluß von Wertschöpfungsnetzwerken auf das Innovationsmanagement der chemischen Industrie. In: Bach, N., Buchholz, W. and Eichler, B. (Eds.). Geschäftsmodelle für Wertschöpfungsnetzwerke. Wiesbaden: 268.Google Scholar
  10. Leker, J. and Herzog, P. (2004). Marketing in der chemischen Industrie. In: Backhaus, K. and Voeth, M. (Eds.). Handbuch Industriegütermarketing. Wiesbaden: 1774.Google Scholar
  11. Hofmann, K. and Budde, F. (2006). Today’s chemical industry: which way is up? In: Budde, F., Felcht, U.-H. and Frankemölle, H. (Eds.). Value creation: strategies for the chemical industry. Weinheim: 7.Google Scholar
  12. Hamelau, N. (2004). Strategische Wettbewerbsanalyse: eine konzeptionelle Umsetzung am Beispiel der Spezialchemie. Wiesbaden. pp. 236 f.Google Scholar
  13. Runge, W. (2006). Innovation, research and technology intelligence in the chemical industry: integrated business, technical and systems approaches. Stuttgart. pp. 121 ff.Google Scholar
  14. Enke, M., Reimann, M. and Geigenmflller, A. (2005). Commodity Marketing: Definition, Forschungsüberblick, Tendenzen. In: Enke, M. and Reimann, M. (Eds.). Commodity Marketing: Grundlagen und Besonderheiten. Wiesbaden: 20.Google Scholar
  15. Wolfe, A. R. (1977). Commodity marketing and generic promotion. European Journal of Marketing, 11(7): 532–547.CrossRefGoogle Scholar
  16. Chafin, D. G. and Hoepner, P. H. (2002). Commodity marketing from a producer’s perspective: 730-day profitable marketing of grain and livestock. Danville.Google Scholar
  17. Lurie, R. S. and Kohli, A. K. (2002). A smarter way to sell commodities. Harvard Business Review, 80(4): 24–26.Google Scholar
  18. Leker, J. and Rühmer, S. (2003). Der Einfluß von Wertschöpfungsnetzwerken auf das Innovationsmanagement der chemischen Industrie. In: Bach, N., Buchholz, W. and Eichler, B. (Eds.). Geschäftsmodelle für Wertschöpfungsnetzwerke. Wiesbaden: 269.Google Scholar
  19. Andre, S., Sanghvi, S. and Röthel, T. (2006). An approach to determining the long-term attractiveness of commodity chemical businesses. In: Budde, F., Felcht, U.-H. and Frankemölle, H. (Eds.). Weinheim: 63.Google Scholar
  20. Runge, W. (2006). Innovation, research and technology intelligence in the chemical industry: integrated business, technical and systems approaches. Stuttgart. p. 55.Google Scholar
  21. Heegewald, H. (2001). Das Produktmanagement im Unternehmensbereich Zwischenprodukte bei der BASF. In: Festel, G., Hassan, A., Leker, J. and Bamelis, P. (Eds.). Betriebswirtschaftslehre für Chemiker: eine praxisorientierte Einführung. Berlin: 390.Google Scholar
  22. Runge, W. (2006). Innovation, research and technology intelligence in the chemical industry: integrated business, technical and systems approaches. Stuttgart. p. 151.Google Scholar
  23. Heegewald, H. (2001). Das Produktmanagement im Unternehmensbereich Zwischenprodukte bei der BASF. In: Festel, G., Hassan, A., Leker, J. and Bamelis, P. (Eds.). Betriebswirtschaftslehre für Chemiker: eine praxisorientierte Einführung. Berlin: 389.Google Scholar
  24. Leker, J. and Herzog, P. (2004). Marketing in der chemischen Industrie. In: Backhaus, K. and Voeth, M. (Eds.). Handbuch Industriegütermarketing. Wiesbaden: 1176.Google Scholar
  25. Da Rin, M. (1998). Finance and the chemical industry. In: Arora, A., Landau, R. and Rosenberg, N. (Eds.). Chemical and long-term economic growth: insights from the chemical industry. New York: 327.Google Scholar
  26. Bartels, E., Augat, T. and Budde, F. (2006). Structural drivers of value creation in the chemical industry. In: Budde, F., Felcht, U.-H. and Frankemölle, H. (Eds.). Value creation: strategies for the chemical industry. Weinheim: 30.Google Scholar
  27. Budde, F., Elliot, B., Farha, G. A., Frankemölle, H., Koch, T. and Palmer, R. (2001). Strategic choices for the chemical industry in the new millenium. In: Budde, F., Farha, G. A., Frankemölle, H., Hoffmeister, D. F. and Krämer, K. (Eds.). Value creation: strategies for the chemical industry. Weinheim: 23.Google Scholar
  28. Jerjen, D., Kaffenberger, T. H. and Spitz, B. (2000). Spezialitätenchemie: Wachstumsbranche im Spannungsfeld aktueller Trends. Nachrichten aus der Chemie, 48(9): 1123.Google Scholar
  29. Unger, L. (1983). Strategic-planning for commodities and specialties: a strategic industry study based on the example of the chemical-industry. Long Range Planning, 16(4): 12.CrossRefGoogle Scholar
  30. Leker, J. and Rühmer, S. (2003). Der Einfluß von Wertschöpfungsnetzwerken auf das Innovationsmanagement der chemischen Industrie. In: Bach, N., Buchholz, W. and Eichler, B. (Eds.). Geschäftsmodelle für Wertschöpfungsnetzwerke. Wiesbaden: 270.Google Scholar
  31. Runge, W. (2006). Innovation, research and technology intelligence in the chemical industry: integrated business, technical and systems approaches. Stuttgart. p. 149Google Scholar
  32. Runge, W. (2006). Innovation, research and technology intelligence in the chemical industry: integrated business, technical and systems approaches. Stuttgart. p. 148.Google Scholar
  33. Arora, A. and Gambardella, A. (1998). Evolution of industry structure in the chemical industry. In: Arora, A., Landau, R. and Rosenberg, N. (Eds.). Chemicals and long-term economic growth: insights from the chemical industry. New York: 401.Google Scholar
  34. Jerjen, D., Kaffenberger, T. H. and Spitz, B. (2000). Spezialitätenchemie: Wachstumsbranche im Spannungsfeld aktueller Trends. Nachrichten aus der Chemie, 48(9): 1122.Google Scholar
  35. Leker, J. and Herzog, P. (2004). Marketing in der chemischen Industrie. In: Backhaus, K. and Voeth, M. (Eds.). Handbuch Industriegütermarketing. Wiesbaden: 1178.Google Scholar
  36. Willers, Y. and Jung, U. (2000). Gibt es das überhaupt: “SpezialChemikalien”? Nachrichten aus der Chemie, 48(11): 1376.CrossRefGoogle Scholar
  37. Leker, J. and Rühmer, S. (2003). Der Einfluß von Wertschöpfungsnetzwerken auf das Innovationsmanagement der chemischen Industrie. In: Bach, N., Buchholz, W. and Eichler, B. (Eds.). Geschäftsmodelle für Wertschöpfungsnetzwerke. Wiesbaden: 269.Google Scholar
  38. Claret, J., Lowth, S. and McVeigh, D. (2001). How to succeed in the rapidly maturing specialty chemicals industry. In: Budde, F., Farha, G. A., Frankemölle, H., Hoffmeister, D. F. and Krämer, K. (Eds.). Value creation: strategies for the chemical industry. Weinheim: 47.Google Scholar
  39. Leker, J. and Herzog, P. (2004). Marketing in der chemischen Industrie. In: Backhaus, K. and Voeth, M. (Eds.). Handbuch Industriegütermarketing. Wiesbaden: 1183.Google Scholar
  40. Richards, A. D. (1998). Connecting performance and competitiveness with finance: a study of the chemical industry. In: Arora, A., Landau, R. and Rosenberg, N. (Eds.). Chemicals and long-term economic growth: insights from the chemical industry. New York: 496.Google Scholar
  41. Landau, R. (1998). The process of innovation in the chemical industry. In: Landau, R., Arora, A. and Rosenberg, N. (Eds.). Chemicals and long-term economic growth: insights from the chemical industry. New York: 140.Google Scholar
  42. Schlenzka, W. and Meffert, J. (2001). Revitalizing innovation. In: Budde, F., Farha, G. A., Frankemölle, H., Hoffmeister, D. F. and Krämer, K. (Eds.). Value creation: strategies for the chemical industry. Weinheim: 109.Google Scholar
  43. Schlenzka, W. and Meffert, J. (2001). Revitalizing innovation. In: Budde, F., Farha, G. A., Frankemölle, H., Hoffmeister, D. F. and Krämer, K. (Eds.). Value creation: strategies for the chemical industry. Weinheim: 111.Google Scholar
  44. Laursen, K. and Salter, A. (2006). Open for innovation: the role of openness in explaining innovation performance among UK manufacturing firms. Strategic Management Journal, 27(2): 131–150.CrossRefGoogle Scholar
  45. Hofstede, G., Neuijen, B., Ohayv, D. D. and Sanders, G. (1990). Measuring organizational cultures: a qualitative and quantitative study across 20 cases. Administrative Science Quarterly, 35(2): 289.CrossRefGoogle Scholar
  46. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. pp. 58 ffGoogle Scholar
  47. Bagozzi, R. P. and Fornell, C. (1982). Theoretical concepts, measurements, and meanings. In: Fornell, C. (Ed.). A second generation of multivariate analysis: measurement and evaluation, Vol. 2. New York: 24.Google Scholar
  48. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 708.Google Scholar
  49. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. P. 712.Google Scholar
  50. Brimer II, G. C. and Hensel, P. J. (1993). Multi-item scale usage in marketing journals: 1980–1989. Journal of the Academy of Marketing Science, 21(4): 339.CrossRefGoogle Scholar
  51. Jacoby, J. (1978). Consumer research: state of art review. Journal of Marketing, 42(2): 93.CrossRefGoogle Scholar
  52. Bagozzi, R. P. and Baumgartner, H. (1994). The evaluation of structural equation models and hypothesis testing. In: Bagozzi, R. P. (Ed.). Principles of marketing research. Cambridge: 388.Google Scholar
  53. Jöreskog, K. G. and Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70(351): 631–639.CrossRefGoogle Scholar
  54. Chin, W. W. (1995). Partial least squares is to Lisrel as principal components analysis is to common factor analysis. Technology Studies, 2: 315–319.Google Scholar
  55. Homburg, C. and Giering, A. (1996). Konzeptualisierung und Operationalisierung komplexer Konstrukte: ein Leitfaden für die Marketingforschung. Marketing ZFP, 18(1): 5–24.Google Scholar
  56. Chin, W. W. (1998). Issues and opinion on structural equation modeling. MIS Quarterly, 22(1): 7–16.Google Scholar
  57. Cassel, C., Hackl, P. and Westlund, A. H. (1999). Robustness of partial least-squares method for estimating latent variable quality structures. Journal of Applied Statistics, 26(4): 435–446.CrossRefGoogle Scholar
  58. Diamantopoulos, A. and Winklhofer, H. M. (2001). Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research, 38(2): 269–277.CrossRefGoogle Scholar
  59. Jarvis, C. B., MacKenzie, S. B. and Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2): 199–218.CrossRefGoogle Scholar
  60. Götz, O. and Liehr-Gobbers, K. (2004). Analyse von Strukturgleichungsmodellen mit Hilfe der Partial-Least-Squares (PLS)-Methode. Die Betriebswirtschaft, 64(6): 714–738.Google Scholar
  61. Albers, S. and Hildebrandt, L. (2006). Methodische Probleme bei der Erfolgsfaktorenforschung: Messfehler, formative versus reflektive Indikatoren und die Wahl des Strukturgleichungs-Modells. Zeitschrift für betriebswirtschaftliche Forschung, 58: 2–33.Google Scholar
  62. Fornell, C. and Bookstein, F. L. (1982). Two structural equation models: Lisrel and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4): 441.CrossRefGoogle Scholar
  63. Jarvis, C. B., MacKenzie, S. B. and Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2): 201.CrossRefGoogle Scholar
  64. Jarvis, C. B., MacKenzie, S. B. and Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2): 202.CrossRefGoogle Scholar
  65. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 787.Google Scholar
  66. Jarvis, C. B., MacKenzie, S. B. and Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2): 200.CrossRefGoogle Scholar
  67. Fornell, C. and Bookstein, F. L. (1982). Two structural equation models: Lisrel and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4): 442.CrossRefGoogle Scholar
  68. Herrmann, A. and Homburg, C. (2000). Marktforschung: Ziele, Vorgehensweisen und Methoden. In: Herrmann, A. and Homburg, C. (Eds.). Marktforschung: Methoden, Anwendungen, Praxisbeispiele. Wiesbaden: 23.Google Scholar
  69. Homburg, C. and Pflesser, C. (2000a). Konfirmatorische Faktorenanalyse. In: Herrmann, A. and Homburg, C. (Eds.). Marktforschung: Methoden, Anwendungen, Praxisbeispiele. Wiesbaden: 420.Google Scholar
  70. Peter, J. P. (1979). Reliability: review of psychometric basics and recent marketing practices. Journal of Marketing Research, 16(1): 8.CrossRefGoogle Scholar
  71. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 137.Google Scholar
  72. Churchill, G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16(1): 64.CrossRefGoogle Scholar
  73. Peter, J. P. (1981). Construct validity: a review of basic issues and marketing practices. Journal of Marketing Research, 18(2): 134.CrossRefGoogle Scholar
  74. Bagozzi, R. P. and Phillips, L. W. (1982). Representing and testing organizational theories: a holistic construal. Administrative Science Quarterly, 27(3): 469.CrossRefGoogle Scholar
  75. Homburg, C. and Giering, A. (1996). Konzeptualisierung und Operationalisierung komplexer Konstrukte: ein Leitfaden für die Marketingforschung. Marketing ZFP, 18(1): 12.Google Scholar
  76. Brimer, G. C., James, K. E. and Hensel, P. J. (2001). Marketing scales handbook: a compilation of multi-item measures. Chicago.Google Scholar
  77. Bearden, W. O. and Netemeyer, R. G. (1999). Handbook of marketing scales: multi-item measures for marketing and consumer behavior research. Thousand Oaks.Google Scholar
  78. Diller, H. (2004). Editorial: Das süße Gift der Kausalanalyse. Marketing ZFP, 26(3): 177.Google Scholar
  79. Souder, W. E. and Song, M. (1998). Analyses of U.S. and Japanese management processes associated with new product success and failure in high and low familiarity markets. Journal of Product Innovation Management, 15(3): 211.CrossRefGoogle Scholar
  80. Eschweiler, M. (2006). Externe Referenzpreise: eine empirisch gestützte verhaltenswissenschaftliche Wirkungsanalyse. Wiesbaden. pp. 149 f.Google Scholar
  81. Kirton, M. (1976). Adaptors and innovator: description and measure. Journal of Applied Psychology, 61(5): 622–629.CrossRefGoogle Scholar
  82. Sundgren, M., Dimenas, E., Gustafsson, J. E. and Seiart, M. (2005). Drivers of organizational creativity: a path model of creative climate in pharmaceutical R&D. R&D Management, 35(4): 366.CrossRefGoogle Scholar
  83. Mehrwald, H. (1999). Das “Not Invented Here”-Syndrom in Forschung und Entwicklung. Wiesbaden. pp. 144 ff.Google Scholar
  84. Mehrwald, H. (1999). Das “Not Invented Here”-Syndrom in Forschung und Entwicklung. Wiesbaden. p. 146.Google Scholar
  85. Petrick, J. F. and Backman, S. J. (2002). An examination of the construct of perceived value for the prediction of golf travelers’ intentions to revisit. Journal of Travel Research, Vol. 41 (August): 40.Google Scholar
  86. Lichtenthaler, U. (2006). Leveraging knowledge assets: success factors of external technology commercialization. Wiesbaden. p. 173Google Scholar
  87. Homburg, C. (1998). Kundennähe von Industriegüterunternehmen: Konzeption, Erfolgsauswirkungen, Determinanten. Wiesbaden. p. 72.Google Scholar
  88. Gerbing, D. and Anderson, J. (1988). An updated paradigm for scale development incorporating unidimensionality and its assessment. Journal of Marketing Research, 25(5): 186.CrossRefGoogle Scholar
  89. Homburg, C. and Giering, A. (1996). Konzeptualisierung und Operationalisierung komplexer Konstrukte: ein Leitfaden für die Marketingforschung. Marketing ZFP, 18(1): 5.Google Scholar
  90. Backhaus, K., Erichson, B., Plinke, W. and Weber, R. (2006). Multivariate Analysemethoden: eine anwendungsorientierte Einführung. Berlin. pp. 260 ff.Google Scholar
  91. Nunnally, J. C. and Bernstein, I. H. (1994). Psychometric theory. New York. pp. 301 ff.Google Scholar
  92. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16: 299.Google Scholar
  93. Gerbing, D. and Anderson, J. (1988). An updated paradigm for scale development incorporating unidimensionality and its assessment. Journal of Marketing Research, 25(5): 188.Google Scholar
  94. Hildebrandt, L. (1984). Kausa lanalytische Validierung in der Marketingforschung. Marketing ZFP, 6(1): 44.Google Scholar
  95. Gerbing, D. and Anderson, J. (1988). An updated paradigm for scale development incorporating unidimensionality and its assessment. Journal of Marketing Research, 25(5): 190.Google Scholar
  96. Churchill, G. A. and Peter, J. P. (1984). Research design effects on the reliability of rating-scales: a meta-analysis. Journal of Marketing Research, 21(4): 360.CrossRefGoogle Scholar
  97. Backhaus, K., Erichson, B., Plinke, W. and Weber, R. (2006). Multivariate Analysemethoden: eine anwendungsorientierte Einführung. Berlin. pp. 368 ff.Google Scholar
  98. Janssen, J. and Laatz, W. (2005). Statistische Datenanalyse mit SPSS für Windows: eine anwendungsorientierte Einführung in das Basissystem und das Modul Exakte Tests. Berlin. pp. 535 ffGoogle Scholar
  99. Jöreskog, K. S. D. (1996). Lisrel 8: user’s reference guide. Chicago. pp. 17 ffGoogle Scholar
  100. Long, J. S. (1986). Covariance structure models. Beverly Hills. p. 44.Google Scholar
  101. Bühner, M. (2004). Einführung in die Test-und Fragebogenkonstruktion. München. p. 210.Google Scholar
  102. Bagozzi, R. P. and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1): 79.CrossRefGoogle Scholar
  103. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. pp. 745 ff.Google Scholar
  104. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 747.Google Scholar
  105. Bagozzi, R. P. and Baumgartner, H. (1994). The evaluation of structural equation models and hypothesis testing. In: Bagozzi, R. P. (Ed.). Principles of marketing research. Cambridge: 401.Google Scholar
  106. Morgan, R. M. and Hunt, S. D. (1994). The commitment-trust theory of relationship marketing. Journal of Marketing, 58(3): 30.CrossRefGoogle Scholar
  107. Talke, K. (2005). Einführung von Innovationen: marktorientierte strategische und operative Aktivitäten als kritische Erfolgsfaktoren. Wiesbaden. p. 184.Google Scholar
  108. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 748.Google Scholar
  109. Fritz, W. (1995). Marktorientierte Unternehmensführung und Unternehmenserfolg. Stuttgart. p. 126.Google Scholar
  110. Bagozzi, R. P. and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1): 80.CrossRefGoogle Scholar
  111. Bagozzi, R. P. and Baumgartner, H. (1994). The evaluation of structural equation models and hypothesis testing. In: Bagozzi, R. P. (Ed.). Principles of marketing research. Cambridge: 170.Google Scholar
  112. Bagozzi, R. P. and Baumgartner, H. (1994). The evaluation of structural equation models and hypothesis testing. In: Bagozzi, R. P. (Ed.). Principles of marketing research. Cambridge: 386.Google Scholar
  113. Fritz, W. (1995). Marktorientierte Unternehmensführung und Unternehmenserfolg. Stuttgart. pp. 130 ff.Google Scholar
  114. Bagozzi, R. P. and Baumgartner, H. (1994). The evaluation of structural equation models and hypothesis testing. In: Bagozzi, R. P. (Ed.). Principles of marketing research. Cambridge: 402.Google Scholar
  115. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 778.Google Scholar
  116. Homburg, C. and Baumgartner, H. (1995). Beurteilung von Kausalmodellen: Bestandsaufnahme und Anwendungsempfehlungen. Marketing ZFP, 17(3): 170.Google Scholar
  117. Fornell, C. and Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(2): 46.Google Scholar
  118. Fritz, W. (1995). Marktorientierte Unternehmensführung und Unternehmenserfolg. Stuttgart. p. 143.Google Scholar
  119. Bongartz, M. (2002). Markenführung im Internet: Verhaltenstypen, Einflussfaktoren, Erfolgswirkungen. Wiesbaden. pp. 41 f.Google Scholar
  120. Betz, J. (2003). Die Akzeptanz des e-commerce in der Automobilwirtschaft: Ausmaß, Konsequenzen und Determinanten aus Sicht von Neuwagenkäufern. Wiesbaden. pp. 83 ff.Google Scholar
  121. Eschweiler, M. (2006). Externe Referenzpreise: eine empirisch gestützte verhaltenswissenschaftliche Wirkungsanalyse. Wiesbaden. pp. 152 ff.Google Scholar
  122. Fritz, W. (1995). Marktorientierte Unternehmensführung und Unternehmenserfolg. Stuttgart. p. 140Google Scholar
  123. Bongartz, M. (2002). Markenführung im Internet: Verhaltenstypen, Einflussfaktoren, Erfolgswirkungen. Wiesbaden. p. 42.Google Scholar
  124. Hesse, J. (2004). Erfolgsforschung im Vertrieb: empirische Analysen von Herstellerunternehmen schnelldrehender Konsumgüter. Wiesbaden. p. 172 f.Google Scholar
  125. Backhaus, K., Erichson, B., Plinke, W. and Weber, R. (2006). Multivariate Analysemethoden: eine anwendungsorientierte Einführung. Berlin. p. 271.Google Scholar
  126. Sundgren, M., Dimenas, E., Gustafsson, J. E. and Seiart, M. (2005). Drivers of organizational creativity: a path model of creative climate in pharmaceutical R&D. R&D Management, 35(4): 359–374.CrossRefGoogle Scholar
  127. Mehrwald, H. (1999). Das “Not Invented Here”-Syndrom in Forschung und Entwicklung. Wiesbaden. pp. 190 ff.Google Scholar
  128. Mehrwald, H. (1999). Das “Not Invented Here”-Syndrom in Forschung und Entwicklung. Wiesbaden. pp. 196 ff.Google Scholar
  129. Srinivasan, R., Lilien, G. L. and Rangaswamy, A. (2002). Technological opportunism and radical technology adoption: an application to e-business. Journal of Marketing, 66(3): 47–60.CrossRefGoogle Scholar
  130. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 140.Google Scholar
  131. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. pp. 138 ff.Google Scholar
  132. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 390.Google Scholar
  133. Diehl, J. M. (1977). Varianzanalyse. Frankfurt a. M. p. 302Google Scholar
  134. Bortz, J. (1988). Statistik für Sozialwissenschaftler. Berlin. p. 437.Google Scholar
  135. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. Mahwah. p. 341.Google Scholar
  136. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 406.Google Scholar
  137. Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics. Boston. p. 196Google Scholar
  138. Bortz, J. (1988). Statistik für Sozialwissenschaftler. Berlin. p. 438Google Scholar
  139. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. Mahwah. p. 339Google Scholar
  140. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 385.Google Scholar
  141. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y. and Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5): 879.CrossRefGoogle Scholar
  142. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y. and Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5): 883.CrossRefGoogle Scholar
  143. Backhaus, K., Erichson, B., Plinke, W. and Weber, R. (2006). Multivariate Analysemethoden: eine anwendungsorientierte Einführung. Berlin. pp. 150 f.Google Scholar
  144. Glaser, W. R. (1978). Varianzanalyse. Stuttgart. pp. 104 ff.Google Scholar
  145. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. Mahwah. pp. 256 ff.Google Scholar
  146. Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics. Boston. pp. 201 ffGoogle Scholar
  147. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. pp. 406 f.Google Scholar
  148. Diehl, J. M. (1977). Varianzanalyse. Frankfurt a. M. pp. 330 ffGoogle Scholar
  149. Bortz, J. (1988). Statistik für Sozialwissenschaftler. Berlin. pp. 343 ff.Google Scholar
  150. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 410.Google Scholar
  151. Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics. Boston. p. 73.Google Scholar
  152. Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics. Boston. p. 75.Google Scholar
  153. Glaser, W. R. (1978). Varianzanalyse. Stuttgart. p. 111.Google Scholar
  154. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 391.Google Scholar
  155. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. Mahwah. p. 261.Google Scholar
  156. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. Mahwah. p. 263.Google Scholar
  157. Shapiro, S. S., Wilk, M. B. and Chen, H. J. (1968). A comparative study of various tests for normality. Journal of the American Statistical Association, 63(324): 1343.CrossRefGoogle Scholar
  158. Glaser, W. R. (1978). Varianzanalyse. Stuttgart. pp. 110 f.Google Scholar
  159. Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics. Boston. p. 202.Google Scholar
  160. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. Mahwah. pp. 269ff.Google Scholar
  161. Glass, G. V., Peckham, P. D. and Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying fixed effects analyses of variance and covariance. Review of Educational Research, 42(3): 237.Google Scholar
  162. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. Mahwah. p. 268.Google Scholar
  163. Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics. Boston. p. 200Google Scholar
  164. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. Mahwah. p. 345Google Scholar
  165. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 407.Google Scholar
  166. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. Mahwah. p. 353.Google Scholar
  167. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. Mahwah. p. 346.Google Scholar
  168. Huitema, B. E. (1980). The analysis of covariance and alternatives. New York. p. 161.Google Scholar
  169. Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. Mahwah. p. 347Google Scholar
  170. Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics. Boston. p. 213.Google Scholar
  171. Bortz, J. (1988). Statistik für Sozialwissenschaftler. Berlin. pp. 447 f.Google Scholar
  172. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 414.Google Scholar
  173. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 418Google Scholar
  174. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 419.Google Scholar
  175. Janssen, J. and Laatz, W. (2005). Statistische Datenanalyse mit SPSS für Windows: eine anwendungsorientierte Einführung in das Basissystem und das Modul Exakte Tests. Berlin. p. 357.Google Scholar
  176. Janssen, J. and Laatz, W. (2005). Statistische Datenanalyse mit SPSS für Windows: eine anwendungsorientierte Einführung in das Basissystem und das Modul Exakte Tests. Berlin. pp. 362 ffGoogle Scholar
  177. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. pp. 424 f.Google Scholar
  178. Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics. Boston. pp. 218 f.Google Scholar
  179. Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics. Boston. pp. 54 f.Google Scholar
  180. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale. pp. 285 ffGoogle Scholar
  181. Hair, J. F., Black, W. C, Babin, B. J., Anderson, R. E. and Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River. p. 428.Google Scholar

Copyright information

© Betriebswirtschaftlicher Verlag Dr.Th. Gabler | GWV Fachverlage GmbH, Wiesbaden 2008

Personalised recommendations