Cruise Passenger Choice Behavior Analysis & Implications for Service Design

  • Tim Martikke
  • Constanze Weisser


Conjoint analysis is a statistical technique used in market research to determine how people value different features that make up an individual product or service. These implicit valuations can be used to create market models that estimate market share, revenue and profitability of new designs. The objective of this paper is to discuss the application of conjoint analysis for forecasting cruise passenger choice behavior and designing optimal cruise services.


Target Group Attribute Level Conjoint Analysis Test Person Service Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auer, C. (2003), Performance Measurement für das Customer-Relationship-ManagementGoogle Scholar
  2. Backhaus, K., Erichson B., Plinke, W. (2006), Multivariate Analysemethoden: eine anwendungsorientierte EinführungGoogle Scholar
  3. Baier, D., Brusch, M. (2009), Conjointanalyse: Methoden – Anwendungen – PraxisbeispieleGoogle Scholar
  4. Bauer, H. H., F. Huber, T. Keller (1997), Design of Lines as a product-policy Variant to retain Customers in the Automotive Industry. In: Johnson, M., Herrmann, A., Huber, F. and Gustafsson, A. (Eds.): Customer Retention in the Automotive Industry – Quality, Satisfaction and Retention, WiesbadenGoogle Scholar
  5. Bradley, R.A. and M.E. Terry (1952), Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons, BiornetrikaGoogle Scholar
  6. Cattin, P., D. R. Wittink (1982), Commercial Use of Conjoint Analysis: A Survey, Journal of MarketingGoogle Scholar
  7. Cruise Lines International Association, Inc.; 2010 CLIA Cruise Market Overview
  8. Currim, I. S., C. B. Weinberg, D. R. Wittink (1981), Design of Subscription Programs for a Performing Arts Series, Journal of Consumer ResearchGoogle Scholar
  9. Elrod, T., Kumar, S. K. (1989), Bias in the First Choice Rule for Predicting Share, Sawtooth Software Conference Proceedings, Ketchum ID: Sawtooth Software Inc.Google Scholar
  10. Dellaert, B., A. Borgers; H. Timmermans (1995), A Day in the City: Using Conjoint Experiments to urband Tourists`Choice of Activity Packages, Tourism ManagementGoogle Scholar
  11. Green P. E, Krieger AE, Wind J (2001), Thirty Years of Conjoint Analysis: Reflections and Prospects, InterfacesGoogle Scholar
  12. Green, Krieger (1998), Choice Rules and Sensitivity Analysis in Conjoint SimulatorsGoogle Scholar
  13. Green, P. E., A. M. Krieger (1993), A simple Approach to Target Market Advertising Strategy, Journal of the Market Research SocietyGoogle Scholar
  14. Green, P. E., V. Srinivasan (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, Journal of Consumer ResearchGoogle Scholar
  15. Gulliksen, Vance (2008), The Cruise Industry, Springer Science; published onlineGoogle Scholar
  16. Gustafsson, A., Herrmann, A., Huber, F. (2007), Conjoint Measurement Methods and ApplicationsGoogle Scholar
  17. Herrmann, A., B. Franken, F. Huber, M. Ohlwein, R. Schellhase (1999), The Conjoint Analysis as an Instrument for Marketing Controlling taking a public Theatre as an Example, International Journal of Arts Management, forthcomingGoogle Scholar
  18. Hensel-Börner, S., Sattler, H. (2001), Ein empirischer Validitätsvergleich zwischen der Customized Computerized analysis (CCC), der adaptive conjoint analysis (ACA) und self explicated-verfahrenGoogle Scholar
  19. IBM (2010), IBM SPSS Conjoint 19Google Scholar
  20. Jobber, D. (2010), Principles and Practice of Marketing, sixth editionGoogle Scholar
  21. Kalbfleisch, W. (2009), The future of medical care on cruise ships; in: Papathanassis, A. (Ed.): Cruise Sector Growth – Managing Emerging Markets, Human Resources, Processes and Systems; 2009; Gabler ResearchGoogle Scholar
  22. Levy, M., Webster, J., Kerin, R. A. (1983), Formulating Push Marketing Strategies: a Method and Application, Journal of MarketingGoogle Scholar
  23. Kuhfeld, W. (2003), Conjoint AnalysisGoogle Scholar
  24. Louviere, J. (1984), Using discrete Choice Experiments and mulitnominal Logit Models to forecast Trial in a competitive Retail Environment: a fast food Restaurant Illustration, Journal of RetailingGoogle Scholar
  25. McFadden, D. (1976), Quantal Choice Analysis. A Survey, Annals of Economic and Social MeasurementGoogle Scholar
  26. Melles, T. (2001), Framing-Effekte in der Conjoint-AnalyseGoogle Scholar
  27. Moore, W. L., Holbrook, M. B. (1990), Conjoint Analysis on objects with environmentally correlated Attributes: The questionable Importance of representative Design, Journal of Consumer ResearchGoogle Scholar
  28. Punj, G. N., Richard S. (1978), The Choice Process for Graduate Business Schools, Journal of Marketing ResearchGoogle Scholar
  29. Scholl, A., Manthey, L., Helm, R, Steiner, M. (2004), Solving multiattribute design problems with analytic hierarchy process and conjoint analysis: An empirical comparisonGoogle Scholar
  30. Skiera, B., Gensler, S. (2002), Berechnung von Nutzenfunktionen und Marktsimulationen mit Hilfe der Conjoint-Analyse (Teil I-IV)Google Scholar
  31. Steiner, M. J., Hruschka, H.(2000), Conjointanalyse-basierte Produkt(linien)gestaltung unter Berücksichtigung von Konkurrenzreaktionen, OR Spektrum, Vol. 22Google Scholar
  32. Vriens, M. (1995), Conjoint analysis in Marketing, Ph. D thesis, Capelle Winsberg, S, De Soete, G. (1994), A latent Class Vector Model for Preference Ratings, Journal of ClassificationGoogle Scholar
  33. Wittink, D. R., Vriens, M., Burhenne W. (1994), Commercial Use of Conjoint Analysis in Europe: Results and Critical Reflections, International Journal of Research in MarketingGoogle Scholar

Copyright information

© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2012

Authors and Affiliations

  • Tim Martikke
  • Constanze Weisser

There are no affiliations available

Personalised recommendations