Seismologische Grundlagen

  • Konstantin Meskouris
  • Klaus-G. Hinzen
  • Christoph Butenweg
  • Michael Mistler


Die Wirkungskette seismischer Phänomene (Bild 2-1) besteht aus drei Gliedern, dem Entstehungsort seismischer Wellen, dem Ausbreitungsmedium und dem Einwirkort. Jedes der drei Glieder der Kette prägt den zeitlichen Verlauf und die Stärke der Erschütterungen, die letztendlich ein Bauwerk dynamisch belasten.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur Kapitel 2

  1. Abrahamson, N.A. und K.M. Shedlock: Overview. Seismological Research Letters, 68, 9–23, 1997.Google Scholar
  2. Aki, K.: Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. 2. Estimation of earthquake moment,released energy, and stress-strain drop from G wave spectrum. Bulletin of the Earthquake Research Institute, 44, 23–88, 1996.Google Scholar
  3. Aki, K.: Local site effects on weak and strong ground motions. Tectoniphysics, 218, 93–112, 1993.CrossRefGoogle Scholar
  4. Aki, K. und Richards, P.: Quantitative seismology: Theory and Methods. Volumes 1 and 2, W.H. Freeman, San Francisco, California, 1980.Google Scholar
  5. Aki, K. und P. Richards: Quantitative seismology second edition. University Science Books, New York, pp. 700, 2002.Google Scholar
  6. Alheid, H.-J. und K.-G. Hinzen: Numerical analysis and measurements of the seismic response of galleries. In: Soil Dynamics and Earthquake Engineering V, edited by IBF Karlsruhe, Elsevier, 719–730, 1991.Google Scholar
  7. Ambraseys, N., Smit, P, Brardi, R., Rinaldis, D., Cotton, F. und Berge, C.: European strong motion database. European Council, Environment and Climate Research Programe, 2000.Google Scholar
  8. Ambraseys, N.N. und Simpson, K.A: Prediction of vertical response spectra in Europe. Earthquake Engineering and Structural Dynamics, 25, 401–412, 1996.CrossRefGoogle Scholar
  9. Ambraseys, N.N., Simpson, K.A. und Bommer, J.J.: Prediction of horizontal response spectra in Europe. Earthquake Engineering and Structural Dynamics, 25, 371–400, 1996.CrossRefGoogle Scholar
  10. Arias, A.: A measure of earthquake intensity. In: R.J. Hansen (ed.). Seismic Design for Nuclear Power Plants, MIT press, Cambridge, Massachusetts, 438–483, 1970.Google Scholar
  11. Arulmoli, K., Arulanadan, K., und Seed, H.B.: A new method for evaluating liquefaction potential. Journal of the Geotechnical Engineering Division, ASCE, 111, 95–114, 1985.CrossRefGoogle Scholar
  12. Atakan, K., Midzi, V., Moreno Toiran, B., Vanneste K., Camelbeeck, T. und Meghraoui, M.: Seismic hazard in regions of present day low seismic activity: uncertainties in the paleoseismic investigations along the Bree Fault Scarp (Roer Graben, Belgium). Soil Dynamics and Earthquake Engineering, 2000.Google Scholar
  13. Bakun, W.H. und C.M. Wentworth: Estimating earthquake location and magnitude from seismic intensity data, Bulletin of the Seismological Society of America, 87, 1502–1521, 1997.Google Scholar
  14. Bakun, W.H. und C.M. Wentworth: Erratum to Estimating earthquake location and magnitude from seismic intensity data, Bulletin of the Seismological Society of Amreica, 89, 557, 1999.Google Scholar
  15. Bath, M.: Introduction to seismology. Birkhäuser, Basel und Stuttgart, 1973.Google Scholar
  16. Ben-Menahem, A. & Singh, S.J.: Seismic waves and sources, Springer Verlag, New York, 1981.zbMATHGoogle Scholar
  17. Ben-Menahem, A. und Singh, S.J.: Seismic waves and sources. Springer-Verlag, Berlin, 1981.zbMATHGoogle Scholar
  18. Benjamin J.R. and Associates: A criterion for determining exceedance of the Operating Basis Earthquake. EPRI Report NP-5930, Electric Power Research Institute, Palo Alto, Cali-fornia, 1988.Google Scholar
  19. Bolt, B.A.: Duration of strong motions. Proceedings of the 4th World Conference an Earthquake Engineering, Santiago, Chile, 1304–1315, 1969.Google Scholar
  20. Bommer J.J. and Martínez-Pereira A.: The effective duration of earthquake strong mo-tion. Journal of Earthquake Engineering, 3, pp. 127–172, 1999.CrossRefGoogle Scholar
  21. Boore, D.M. und Joynerm W.B.: Prediction of ground motion in North America. In: Proceedings of the ATC-35 Seminar on new Developments on Earthquake Ground Motion, 1994.Google Scholar
  22. Estimates an Implications for Engineering Design Practice, Applied Technology Council, Redwood City, 1–14.Google Scholar
  23. Campbell, K.W.: Near-source attenuation of peak horizontal acceleration. Bulletin of the Seismological Society of America, 71, 2039–270, 1981.Google Scholar
  24. Castro, G.: Liquefaction of sands. Harvard Soil Mechanics Series 87, Harvard University, Cambridge, Massachusetts, 1969.Google Scholar
  25. Chen, P. und Chen, H.: Scaling law and its applications to earthquake statistical relations, Tectonophysics, 166, 53–72, 1989.CrossRefGoogle Scholar
  26. DeAlba, P., Baldwin, K., Janoo, V., Roe, G., und Chelikkel, B.: Elastic wave velocities an liquefaction potential. Geotechnical Testing Journal, ASTM, 7, 77–88, 1984.CrossRefGoogle Scholar
  27. Decker, K., G. Gangl und M. Kandler: The earthquake of Carnuntum in the 4th century AD - archaeological results, seismologic scenario and seismotectonic implications for the Vienna Basin Fault, Austria. Journal of Seismology, in press, 2006.Google Scholar
  28. Ekström, G. and Dziewonski, A.M.: Evidence of bias in estimations of earthquake size. Nature, 3322, p. 319–323, 1988.CrossRefGoogle Scholar
  29. Ewald, M., H. Igel, K. G. Hinzen, and F Scherbaum: Basin-related effects on ground motion for earthquake scenarios in the Cologne basin, Germany, Geophysical Journal International, 166, 197–212, 2006.CrossRefGoogle Scholar
  30. Ewald, M.: Numerical simulation of site effects with application to the Cologne basin. Diplomarbeit, Institut für Angewandte Geophysik, LMU München, 2001.Google Scholar
  31. Ewing, M., Jardesky, W., und Press, F.: Elastic waves in layered media. McGraw-Hill, New York, 380, 1957.zbMATHGoogle Scholar
  32. Fäh, D., S. Steimen, I. Oprsal, J. Ripperger, J. Wössner, R. Schatzmann, P. Kästli, I. Spottke und P. Huggenberger: The earthquake of 250 A.D. in Augusta Raurica, a real event with a 3D site-effect? Journal of Seismology, in press, 2006.Google Scholar
  33. Flinn, E.A., Engdahl, E.R. und Hill, A.R.: Seismic and geographical regionalization. Bulletin of the Seismological Society of America, 64, 770–793, 1074.Google Scholar
  34. Galladini, F., K.-G. Hinzen und S. Stiros: Archaeoseismology: methodological issues and procedure. Journal of Seismology, in press, 2006.Google Scholar
  35. Grünthal, G. (ed.): European macroseismic scale. Cahiers du Centre Europeéen de Géodynamique et de Séismologie, Luxembourg, 15, 1998.Google Scholar
  36. Grünthal, G. und GSHAP working group: Seismic hazard assessment for Central, North and Northwest Europe: GSHAP Region 3. Annali di Geofisica, 42, 999–1011, 1999.Google Scholar
  37. Gutenberg, B.: Lehrbuch der Geophysik. Gebrüder Borntraeger, Berlin, 1017, 1929.zbMATHGoogle Scholar
  38. Gutenberg, B. und C.F. Richter: Earthquake magnitude, intensity, energy, and acceleration. Bulletin of the Seismological Society of America, 46, 104–145, 1956.Google Scholar
  39. Gutenberg, B. und C.F. Richter: Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 1985–1988, 1944.Google Scholar
  40. Gutenberg, B. und C.F. Richter: Seismicity of the earth and related phenomena. Princeton University Press, New Jersey, 310, 1944.Google Scholar
  41. Haldar, A. und Tang, W.H.: Probabilistic evaluation of liquefaction potential. Journal of the Geotecnical Engineering Division, ASCE, 107, 577–589, 1981.Google Scholar
  42. Haskell, N.A.: Total energy und energy spectral density of elastic waves from propagating faults. Bulletin of the Seismological Society of America, 54, 1811–1841, 1964.Google Scholar
  43. Heaton, T.H., Anderson, D.L., Arabasz, W.J., Buland, R., Ellsworth, W.L., Hartzell, S.H., Lay, T. und Spudich, P.: National seismic system science plan. Geol. Surv. Curic, 1031, 1989.Google Scholar
  44. Hinzen, K.-G., Scherbaum, F. und Weber, B.: Study of the lateral resolution of H/V measurements across a normal fault in the Lower Rhine Embayment, Germany, Journal of Earthquake Engineering, 8, 909–926, 2004.CrossRefGoogle Scholar
  45. Hinzen, K,.G.: Archaeological case study of the main buildung of Kerkrade-Holzkuil. In: Techelmann, G., Het villacomplex Kerkrade-Holzkuil, ADC ArchaeProjecten, Rapport 155, Amersfoort, 2005.Google Scholar
  46. Hinzen, K.-G. und Oemisch, M.: Location and magnitude from seismic intensity data of recent and historic earthquakes in the Northern Rhine area, Central Europe. Bulletin Seismological Society America, 91, 40–56, 2001.CrossRefGoogle Scholar
  47. Hinzen, K.-G., Reamer, S.K.: Seismicity, seismotectonics, and seismic hazard in the Northern Rhine Area, In: Stein, S., Mazzotti, S.:Intraplate Seismicity, GSA books, in press, 2006.Google Scholar
  48. Idriss, I.M., Dobry, R., und Singh, R.D.: Nonlinear behavior of soft clays during cyclic loading. Journal of the Geotechnical Engineering Divison,, ASCE, 104, 1427–1447, 1978.Google Scholar
  49. Ishihara, K.: Liquefaction and flow failure during earthquakes. Geotechnique, 43, 351–415, 1993.CrossRefGoogle Scholar
  50. Ishihara, K. und Yoshimine, M.: Evaluation of settlement in sand deposits following liquefaction during earthquakes. Soils and Foundations, 32,173–188, 1992.Google Scholar
  51. Jones, L.: True confessions from a magnitude-weary seismologist. Seismological Reseach Letters. 71, 395–396, 2000.CrossRefGoogle Scholar
  52. Jost, M. L., und R. B. Herrmann: A student's guide to und review of moment tensors, Seismological Research Letters 60, 37–57, 1989.Google Scholar
  53. Joyner W.J. und Boore, D.M.: Peak horizontal acceleration and velocity from strong ground motion recordings including records from the 1979 Imperial Valley, California earthquake. Bulletin of the Seismological Society of America, 71, 2011–2038, 1981.Google Scholar
  54. Kanamori, H.: The energy release in great earthquakes. Journal of Geophysical Research, 82, 2981–2987, 1977.CrossRefGoogle Scholar
  55. Kanamori, H.: Magnitude scale and quantification of earthquakes. Tectonophysics, 93, 185–199, 1983.CrossRefGoogle Scholar
  56. Kasahara, K.: Earthquake machanichs. Cambridge University Press, Cambridge, 1981.Google Scholar
  57. Keilis-Borok, V. I.: Concerning the determination of the seismic parameters of a focus. TR. Geogiz. Inst. Akad. Nauk. SSSR, 9, 3–19. (in Russisch), 1950.Google Scholar
  58. King, G. C. P.: Geological faults, fractures, creep and strain, Philosophical Transactions Royal Society London, A., 288, 197–212, 1978.CrossRefGoogle Scholar
  59. Knödel, K., Krummel, H. und Lange, G.: Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten – Geophysik. Springer, Berlin, 1063, 1997.Google Scholar
  60. Kövesligethy, R.: Seismischer Stärkegrad und Intensität der Beben. Gerlands Beiträge zur Geophysik. VIII, Leipzig, 1907.Google Scholar
  61. Kramer, S.L.: Geotechnical earthquake engineering. Prentice Hall, New Jersey, 653, 1996.Google Scholar
  62. Kwok, A.O. und Stewart, J.P.: Evaluation of the Effectiveness of Theoretical 1D Amplification Factors for Earthquake Ground-Motion Prediction. Bulletin of the Seismological Society of America, 96, 1422–1436, 2006.CrossRefGoogle Scholar
  63. Lawson, A.C. (chairman): The California earthquake of April 18, 1906: Report of the State Earthquake Investigation Commission: Carnegie Institution of Washington Publication 87, 2 vols, 1908.Google Scholar
  64. Lay, T. und Wallace, T.C.: Modern global seismology. Academic Press, San Diego, California, 517, 1995.Google Scholar
  65. Leydecker, G.: Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 800 - 2001. - Datenfile, BGR Hannover, 2002.Google Scholar
  66. Leydecker, G. und Aichele, H.: The Seismogeographical Regionalisation for Germany: The Prime Example of Third-Level Regionalisation. -Geologisches Jahrbuch, Hannover, E 55, 85–98, 1998.Google Scholar
  67. Maruyama, T.: Basic Theory of Seismic Waves. Part I of Earthquakes, Volcanoes, and Rockmechanics (ed. S. Miyamura), Kyoritsu Shuppan Co., Tokyo.(in Japanisch), 1968.Google Scholar
  68. McClapin (ed.): Paleoseismology. Academic Press, London, 588, 1996.Google Scholar
  69. McGuire, R.K. und Arabasz, W.J.: An introduction to probabilistic seismic hazard analysis. In: S.H. Ward, (ed.), Geotechnical and Environmental Geophysics, Society of Exploration Geophysicists, 1, 333–353, 1990.Google Scholar
  70. Mitchell, J.K. und Tseng, D.-J.: Assessment of liquefaction potential by cone penetration resistance. In: J.M. Duncan, (ed.), Proceedings, H. Bolton Seed Memorial Symposium, Berkeley, California, 2, 335–350, 1990.Google Scholar
  71. Munich Re Group: World of natural hazards. CD Rom, München, 2000.Google Scholar
  72. Murphy, J.R. und O’Brian, L.J.: The correlation of peak ground acceleration with seismic intensity und other physical parameters. Bulletin of the Seismological Society of America, 67, 877–915, 1977.Google Scholar
  73. Nakamura, Y.: A method for dynamic characteristic estimation of subsurface using microtremors on the ground surface, QR of RTRI 30, 25–33, 1989.Google Scholar
  74. Nazarian, S, und Stokoe, K.H.: Use of spectral analysis of surface waves for determination of moduli and thickness of pavement systems. Transportation Research Record 954, Transportation Road Board, Washington, D.C., 1983.Google Scholar
  75. Newmark, N.M. und Hall, W.J.: Earthquake spectra and design. EERI Monograph, Earthquake Engineering Research Institute, Berkeley, California, 103, 1982.Google Scholar
  76. Reamer, S.K., K.-G. Hinzen: An earthquake catalog for the Northern Rhine Area, Central Europe (1975–2002), Seismological Research Letters, 74, 575–882, 2004.Google Scholar
  77. Reid, H.F.: The California earthquake of April 18, 1906. Publication 87, 21, Carnegie Institute of Washington, Washington, D.C., 1910.Google Scholar
  78. Reid, H.F.: The elastic rebound theory of earthquakes. Bulletin of the Department of Geology, University of Berkeley, 6, 413–444, 1911.Google Scholar
  79. Reiter, L.: Earthquake hazard analysis – Issues und insights. Columbia University Press, New York, 254, 1990.Google Scholar
  80. Richter, C.F.: An instrumental earthquake scale. Bulletin of the Seismological Society of America, 25, 1–32, 1935.Google Scholar
  81. Richter, C.F.: Elementary seismology. W.H. Freeman, San Francisco, 1958.Google Scholar
  82. Scherbaum, F., Hinzen, K.-G. und Ohrnberger: Determination of shallow shear wave velocity profiles in the cologne, germany area using ambient vibrations. Geophys. Journal Int. 152, 597–612, 2003.CrossRefGoogle Scholar
  83. Scherbaum, F.: Modelling the Roermond Earthquake of April 13, 1992 by stochastic simulation of its high frequency strong ground motion, Geophysical Journal International, 119, 31–43, 1994.CrossRefGoogle Scholar
  84. Schneider, G.: Naturkatastrophen. Enke Verklag, Stuttgart, 364, 1980.Google Scholar
  85. Scholz, C. H.: The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge, UK, 1990.Google Scholar
  86. Schwarz, D.P. und Coppersmith, K.J.: Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research, 89, 5681–5698, 1984.CrossRefGoogle Scholar
  87. Seidl, D. und Berckhemer, H.: Determination of source moment and radiated seismic energy from broadband recordings. Physics of the Earth and Planetary Interior, 30, 209–213, 1982.CrossRefGoogle Scholar
  88. Sheriff, R.E. und Geldart, L.P.: Exploration seismology. Cambridge University Press, Cambridge, 592, 1995.Google Scholar
  89. Skoko, D. und Mokrovic, J.: Andrija Mohorovicic. Skolska Knjiga, Zagreb, 147, 1982.Google Scholar
  90. Sponheuer, W.: Methoden zur Herdtiefenbestimmung in der Makroseismik. Freiberger Forschungshefte, 88, 10–117, 1960.Google Scholar
  91. Spudich, P., Joyner, A.G., Lindh, A.G., Boore, D.M., Margaris, B.M. und Fletcher, J.B.: SEA99: A revised ground motion prediction relation for use in extensional tectionic regimes. Bulletin of the Seismological Society of America, 89, 1156–1170, 1999.Google Scholar
  92. Trifunac, M.D. und Brady, A.G.: A study of the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 65, 581–626, 1975.Google Scholar
  93. Von Thun J.L., Rochim L.H., Scott G.A. and Wilson J.A.: Earthquake ground motions for design and analysis of dams. Earthquake Engineering and Soil Dynamics II - Recent Ad-vances in Ground-Motion Evaluation, Geotechnical Special Publication, 20, pp. 463–481, 1988.Google Scholar
  94. Wald D.J. und Heaton, T.H.: Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake, Bulletin of the Sesimological Society of America, 84, 668–691, 1994.Google Scholar
  95. Wald, D.J., Heaton, T.H. und Helmberger, D.V.: Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong motion and broadband teleseismic data, Bull. Seis. Soc. Am., 81, 1540–1572, 1991.Google Scholar
  96. Wells, D.L. und Coppersmith, K.J.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002, 1994.Google Scholar
  97. Wilson, R.C.: Relation of Arias intensity to magnitude and distance in California. Open File Report 93–556, U.S. Geological Survey, Reston, Virginia, 42, 1993.Google Scholar

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Authors and Affiliations

  • Konstantin Meskouris
  • Klaus-G. Hinzen
  • Christoph Butenweg
  • Michael Mistler

There are no affiliations available

Personalised recommendations