Categorical aspects of Hopf algebras

  • Robert Wisbauer


Hopf algebras allow for useful applications, for example in physics. Yet they also are mathematical objects of considerable theoretical interest and it is this aspect which we want to focus on in this survey. Our intention is to present techniques and results from module and category theory which lead to a deeper understanding of these structures. We begin with recalling parts from module theory which do serve our purpose but which may also find other applications. Eventually the notion of Hopf algebras (in module categories) will be extended to Hopf monads on arbitrary categories.


Hopf Algebra Commutative Ring Monoidal Category Forgetful Functor Comparison Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adámek, J. and and Porst, H.E., From varieties of algebras to covarieties of coalgebras, Electronic Notes in Theoretical Computer Science 44.1 (2001)Google Scholar
  2. Beck, J., Distributive laws, in Seminar on Triples and Categorical Homology Theory, B. Eckmann (ed.), Springer LNM 80, 119–140 (1969)Google Scholar
  3. Böhm, G., Brzeziński, T. and Wisbauer, R., Monads and comonads in module categories, arXiv:0804.1460 (2008)Google Scholar
  4. Bruguiéres, A. and Virelizier, A., Hopf monads, Adv. Math. 215(2), 679–733 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. Brzeziński, T. and Majid, Sh., Comodule bundles, Commun. Math. Physics 191, 467–492 (1998)MATHCrossRefGoogle Scholar
  6. Brzeziński, T. and Wisbauer, R., Corings and Comodules, London Math. Soc. Lecture Note Series 309, Cambridge University Press (2003)Google Scholar
  7. Eilenberg, S. and Moore, J.C., Adjoint functors and triples, Ill. J. Math. 9, 381–398 (1965)MATHMathSciNetGoogle Scholar
  8. Gumm, H.P., Universelle Coalgebra, in: Allgemeine Algebra, Ihringer, Th., Berliner Stud. zur Math., Band 10, 155–207, Heldermann Verlag (2003)Google Scholar
  9. Kaučikas, A. and Wisbauer, R., Noncommutative Hilbert Rings, J. Algebra Appl. 3(4), 437–444 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. Loday, J.-L., Generalized bialgebras and triples of operads, arXiv:math/0611885Google Scholar
  11. Lomp, Ch., A central closure construction for certain algebra extensions. Applications to Hopf actions, J. Pure Appl. Algebra 198 (1–3), 297–316 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. Mesablishvili, B., Entwining Structures in Monoidal Categories, J. Algebra 319(6), 2496–2517 (2008)MATHCrossRefMathSciNetGoogle Scholar
  13. Mesablishvili, B. and Wisbauer, R., Bimonads and Hopf monads on categories, arXiv:math.QA/0710.1163 (2007)Google Scholar
  14. Moerdijk, I., Monads on tensor categories, J. Pure Appl. Algebra 168(2–3), 189–208 (2002)MATHCrossRefMathSciNetGoogle Scholar
  15. Morita,K., Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 6, 83–142 (1958)MATHMathSciNetGoogle Scholar
  16. Nastasescu, C., Rings. Modules. Categories. (Inele. Module. Categorii.). (Romanian) Bucuresti: Editura Academiei Republicii Socialiste Romania (1976)MATHGoogle Scholar
  17. Turi, D. and Plotkin, G., Towards a mathematical operational Semantics, Proceedings 12th Ann. IEEE Symp. on Logic in Computer Science, LICS’97, Warsaw, Poland (1997)Google Scholar
  18. Wisbauer, R., Foundations of module and ring theory. A handbook for study and research, Algebra, Logic and Appl., Gordon and Breach, Philadelphia (1991)MATHGoogle Scholar
  19. Wisbauer, R., Modules and structure presheaves for arbitrary rings, Adv. Math., Beijing 20, No.1, 15–23 (1991).MATHMathSciNetGoogle Scholar
  20. Wisbauer, R., Modules and Algebras: Bimodule Structure and Group Actions on Algebras, Pitman Mono. PAM 81, Addison Wesley, Longman (1996)Google Scholar
  21. Wisbauer, R., Algebras versus coalgebras, Appl. Categor. Struct. 16(1–2) (2008), 255–295.MATHCrossRefMathSciNetGoogle Scholar
  22. Wisbauer, R., Hopf monads on categories, Jain, S.K. (ed.) et al., Noncommutative rings, group rings, diagram algebras and their applications. Intern. conf. University of Madras 2006; American Mathematical Society, Contemporary Mathematics 456, 219–230 (2008).Google Scholar
  23. Wisbauer, R., Generators in module and comodule categories, Proc. of the Faith-Osofsky conference, Zanesville (2007).Google Scholar

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Authors and Affiliations

  • Robert Wisbauer
    • 1
  1. 1.Mathematical InstituteHeinrich Heine UniversityDüsseldorfGermany

Personalised recommendations