Some remarks on the action of quantum isometry groups

  • Debashish Goswami


We give some new sufficient conditions on a spectral triple to ensure that the quantum group of orientation and volume preserving isometries defined in [6] has a C -action on the underlying C algebra.


Hopf Algebra Quantum Group Unitary Representation Compact Type Compact Quantum Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    [1] Baaj, S. and Skandalis, G.: Unitaires multiplicatifs et dualite pour les produits croises de C -algebres, Ann. Sci. Ecole Norm. Sup. (4) 26 (1993), no. 4, 425–488.MathSciNetGoogle Scholar
  2. [2]
    [2] Banica, T.: Quantum automorphism groups of small metric spaces, Pacific J. Math. 219(2005), no. 1, 27–51.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    [3] Banica, T.: Quantum automorphism groups of homogeneous graphs, J. Funct. Anal. 224(2005), no. 2, 243–280.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    [4] Bichon, J.: Quantum automorphism groups of finite graphs, Proc. Amer. Math. Soc. 131(2003), no. 3, 665–673.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    [5] Bhowmick, J.: Quantum Isometry Group of the n tori, preprint (2008), arXiv 0803.4434.Google Scholar
  6. [6]
    [6] Bhowmick, J. and Goswami, D.: Quantum Group of Orientation preserving Riemannian Isometries, preprint (2008), arXiv 0806.3687.Google Scholar
  7. [7]
    [7] Bhowmick, J., Goswami, D. and Skalski, A.: Quantum Isometry Groups of 0- Dimensional Manifolds , preprint(2008), arXiv 0807.4288., to appear in Trans. A. M. S.Google Scholar
  8. [8]
    [8] Bhowmick, J. and Goswami, D.: Quantum isometry groups : examples and computations, Comm. Math. Phys. 285 (2009), no. 2, 421–444..MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    [9] Bhowmick, J. and Goswami, D.: Quantum isometry groups of the Podles sphere, preprint (2008)Google Scholar
  10. [10]
    [10] Connes, A.: “Noncommutative Geometry”, Academic Press, London-New York (1994).Google Scholar
  11. [11]
    [11] Goswami, D.: Quantum Group of isometries in Classical and Non Commutative Geometry, Comm. Math. Phys. 285 (2009), no. 1, 141–160.CrossRefMathSciNetGoogle Scholar
  12. [12]
    [12] Goswami, D.: On Equivariant Embedding of Hilbert C modules, to appear in Proc. Ind. Acad. Sci. (Math. Sci.), available at arXiv:0704.0110.Google Scholar
  13. [13]
    [13] Goswami, D. and Sinha, K. B.: “Quantum Stochastic Calculus and Noncommutative Geometry”, Cambridge Tracts in Mathematics 169, Cambridge University Press, U.K., 2007.Google Scholar
  14. [14]
    [14] Hoegh-Krohn, R, Landstad, M. B., Stormer, E.: Compact ergodic groups of automorphisms, Ann. of Math. (2) 114 (1981), no. 1, 75–86.CrossRefMathSciNetGoogle Scholar
  15. [15]
    [15] Kustermans, J. and Vaes, S.: Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand. 92 (2003), no. 1, 68–92.MATHMathSciNetGoogle Scholar
  16. [16]
    [16] Podles, P.: Symmetries of quantum spaces, Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Comm. Math. Phys. 170(1995), no. 1, 1–20.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    [17] Soltan, P. M.: Quantum families of maps and quantum semigroups on finite quantum spaces, preprint, arXiv:math/0610922.Google Scholar
  18. [18]
    [18] Vaes, S.: The unitary implementation of a locally compact quantum group action, J. Funct. Anal. 180 (2001), no. 2, 426–480.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    [19] Maes, A. and Van Daele, A.: Notes on compact quantum groups, Nieuw Arch. Wisk. (4)16(1998), no. 1–2, 73–112.Google Scholar
  20. [20]
    [20] Wang, S.: Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), no. 3, 671–692.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    [21] Wang, S.: Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195(1998), 195–211.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    [22] Wang, S.: Structure and isomorphism classification of compact quantum groups Au(Q) and Bu(Q), J. Operator Theory 48 (2002), 573–583.MATHMathSciNetGoogle Scholar
  23. [23]
    [23] Wang, S. : Ergodic actions of universal quantum groups on operator algebras. Comm. Math. Phys. 203 (1999), no. 2, 481–498.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    [24] Woronowicz, S. L.: Compact matrix pseudogroups, Comm. Math. Phys. 111(1987), no. 4, 613–665.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    [25] Woronowicz, S. L.: “Compact quantum groups”, pp. 845–884 in Symétries quantiques (Quantum symmetries) (Les Houches, 1995), edited by A. Connes et al., Elsevier, Amsterdam, 1998.Google Scholar
  26. [26]
    [26] Woronowicz, S. L.: Pseudogroups, pseudospaces and Pontryagin duality, Proceedings of the International Conference on Mathematical Physics, Lausane (1979), Lecture Notes in Physics 116, pp. 407–412.CrossRefMathSciNetGoogle Scholar

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Authors and Affiliations

  • Debashish Goswami
    • 1
  1. 1.Stat-Math Unit, Kolkata CentreIndian Statistical InstituteKolkataIndia

Personalised recommendations