Hopf-cyclic homology with contramodule coefficients

  • Tomasz Brzeziński


A new class of coefficients for the Hopf-cyclic homology of module algebras and coalgebras is introduced. These coefficients, termed stable anti-Yetter-Drinfeld contramodules, are both modules and contramodules of a Hopf algebra that satisfy certain compatibility conditions.


Hopf Algebra Compatibility Condition Cyclic Module Module Algebra Cyclic Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    [1] Böhm, G., Brzeziński, T., Wisbauer, R., Monads and comonads in module categories, arxiv:0804.1460 (2008).Google Scholar
  2. [2]
    [2] Brzeziński, T., Flat connections and (co)modules, in New Techniques in Hopf Algebras and Graded Ring Theory, S. Caenepeel and F. Van Oystaeyen (eds.), Universa Press, Wetteren, pp. 35–52, (2007).Google Scholar
  3. [3]
    [3] Brzeziński, T., Non-commutative connections of the second kind, arxiv:0802.0445, J. Algebra Appl., in press (2008).Google Scholar
  4. [4]
    [4] Brzeziński, T., Wisbauer, R., Corings and Comodules, Cambridge University Press, Cambridge (2003). Erratum: http://www-maths.swan.ac.uk/staff/tb/Corings.htm
  5. [5]
    [5] Connes, A., Moscovici, H., Cyclic cohomology and Hopf algebra symmetry, Lett. Math. Phys. 52, 1–28 (2000).MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    [6] Eilenberg, S., Moore, J.C., Foundations of relative homological algebra, Mem. Amer. Math. Soc. 55 (1965).Google Scholar
  7. [7]
    [7] Hajac, P.M., Khalkhali, M., Rangipour, B., Sommerhäuser, Y., Stable anti-Yetter-Drinfeld modules, C. R. Math. Acad. Sci. Paris, 338, 587–590 (2004).MATHMathSciNetGoogle Scholar
  8. [8]
    [8] Hajac, P.M., Khalkhali, M., Rangipour, B., Sommerhäuser, Y., Hopf-cyclic homology and cohomology with coefficients, C. R. Math. Acad. Sci. Paris, 338, 667–672 (2004).MATHMathSciNetGoogle Scholar
  9. [9]
    [9] Jara, P., Ştefan, D., Cyclic homology of Hopf-Galois extensions and Hopf algebras, Proc. London Math. Soc. 93, 138–174 (2006).MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    [10] Kaygun, A., Khalkhali, M., Hopf modules and noncommutative differential geometry, Lett. Math. Phys. 76, 77–91 (2006).MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    [11] Khalkhali, M., Rangipour, B., Cup products in Hopf-cyclic cohomology, C. R. Math. Acad. Sci. Paris 340, 9–14 (2005).MATHMathSciNetGoogle Scholar
  12. [12]
    [12] Loday, J.-L., Cyclic Homology 2nd ed., Springer, Berlin (1998).MATHGoogle Scholar
  13. [13]
    [13] Manin, Yu.I., Gauge Field Theory and Complex Geometry, Springer-Verlag, Berlin (1988).MATHGoogle Scholar
  14. [14]
    [14] Moscovici, H., Rangipour, B., Cyclic cohomology of Hopf algebras of transverse symmetries in codimension 1, Adv. Math. 210, 323–374 (2007).MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    [15] Positselski, L., Homological algebra of semimodules and semicontramodules, arXiv:0708.3398 (2007).Google Scholar
  16. [16]
    [16] Vinogradov, M.M., Co-connections and integral forms, (Russian) Dokl. Akad. Nauk 338, 295–297 (1994); English translation in Russian Acad. Sci. Dokl. Math. 50, 229–233 (1995).Google Scholar
  17. [17]
    [17] Vinogradov, M.M., Remarks on algebraic Lagrangian formalism, Acta Appl. Math. 49, 331–338 (1997).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Authors and Affiliations

  • Tomasz Brzeziński
    • 1
  1. 1.Department of MathematicsSwansea UniversitySwanseaU.K

Personalised recommendations