Skip to main content
  • 646 Accesses

Abstract

So far, we have mainly concentrated on improving the formulation of the problem yielding a better lower bound of the linear program relaxation. A further important aspect in a branch-and-cut algorithm is the generation of good feasible solutions early in the solution process with the aim of reducing the overall computational effort. Thus, in this chapter we focus on the development of a primal heuristic, aiming at the generation of solutions with a low objective function value in an adequate running time. ding the deterministic as well as the stochastic problem, a variety of primal approaches can be found in the literature, generally classified into construction and improvement heuristics. In order to obtain a good feasible start solution for the branch-and-cut algorithm, we follow the idea of relax-and-fix, which constructs a feasible solution from scratch. Thereon, we adapt this approach to our problems by developing problem specific approximation schemes, which are used additionally to the integrality relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Mahlke, D. (2011). Primal Heuristics. In: A Scenario Tree-Based Decomposition for Solving Multistage Stochastic Programs. Vieweg+Teubner. https://doi.org/10.1007/978-3-8348-9829-6_5

Download citation

Publish with us

Policies and ethics