• Ulrich Görtz
  • Torsten Wedhorn


In the current chapter, we will define the notion of scheme. In a sense, the remainder of this book is devoted to the study of schemes, so this notion is fundamental for all which follows. Schemes arise by “gluing affine schemes”, similarly as prevarieties are obtained by gluing affine varieties. Therefore after the preparations in the previous chapter, the definition is very simple, see (3.1). As for varieties we define projective space (3.6) by gluing copies of affine spaces. This is an example of a scheme which is not affine.


Open Subset Topological Space Prime Ideal Irreducible Component Local Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 2010

Authors and Affiliations

  • Ulrich Görtz
    • 1
  • Torsten Wedhorn
    • 2
  1. 1.Institute of Experimental MathematicsUniversity Duisburg-EssenEssenGermany
  2. 2.University of PaderbornDepartment of MathematicsPaderbornGermany

Personalised recommendations