L-interpretation of a classification of deformations of Poisson structures in dimension three

  • Anne Pichereau


We give an L -interpretation of the classification, obtained in [17], of the formal deformations of a family of exact Poisson structures in dimension three. We indeed reobtain the explicit formulas for all the formal deformations of these Poisson structures, together with a classification in the generic case, by constructing a suitable quasi-isomorphism between two L -algebras, which are associated to these Poisson structures.


Poisson Bracket Poisson Structure Algebra Structure Poisson Algebra Poisson Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    François Bayen, Moshé Flato, Christian Fronsdal, André Lichnerowicz, and Daniel Sternheimer. Deformation theory and quantization. I and II. Annals of Physics, 111(1):61–110, 1978.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alberto Cattaneo, Bernhard Keller, Charles Torossian, and Alain Bruguières. Déformation, quantification, théorie de Lie. Panoramas et Synthèses, 20:viii+186, 2005.Google Scholar
  3. 3.
    Martin Doubek, Martin Markl, and Petr Zima. Deformation theory (lecture notes). Universitatis Masarykianae Brunensis. Facultas Scientiarum Naturalium. Archivum Mathematicum, 43(5):333–371, 2007.MATHMathSciNetGoogle Scholar
  4. 4.
    Johannes Huebschmann. Origins and breadth of the theory of higher homotopies. Festschrift in honor of M. Gerstenhaber’s 80-th and Jim Stashe ’s 70-th birthday, Progress in Math. (to appear), arXiv:math/0710.2645.Google Scholar
  5. 5.
    Johannes Huebschmann. Poisson cohomology and quantization. Journal für die Reine und Angewandte Mathematik, 408:57–113, 1990.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Johannes Huebschmann and Jim Stasheff. Formal solution of the master equation via HPT and deformation theory. Forum Mathematicum, 14(6):847–868, 2002.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Tornike V. Kadeishvili. On the theory of homology of fiber spaces. International Topology Conference (Moscow State Univ., Moscow, 1979), kademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk., 35(3(213)):183–188, 1980. See also arXiv:math/0504437.Google Scholar
  8. 8.
    Hiroshige Kajiura and Jim Stasheff. Homotopy algebras inspired by classical open-closed string field theory. Communications in Mathematical Physics, 263(3):553–581, 2006.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Maxim Kontsevich. Deformation quantization of Poisson manifolds. Letters in Mathematical Physics, 66(3):157–216, 2003.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tom Lada and Martin Markl. Strongly homotopy Lie algebras. Communications in Algebra, 23(6):2147–2161, 1995.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Tom Lada and Jim Stasheff. Introduction to SH Lie algebras for physicists. International Journal of Theoretical Physics, 32(7):1087–1103, 1993.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Camille Laurent-Gengoux, Anne Pichereau, and Pol Vanhaecke. An invitation to poisson structures. monograph to appear in Springer.Google Scholar
  13. 13.
    Calin I. Lazaroiu. String field theory and brane superpotentials. The Journal of High Energy Physics, Paper 18(10):40 p, 2001.MathSciNetGoogle Scholar
  14. 14.
    André Lichnerowicz. Les variétés de Poisson et leurs algèbres de Lie associées. Journal of Differential Geometry, 12(2):253–300, 1977.MATHMathSciNetGoogle Scholar
  15. 15.
    Martin Markl. Homotopy algebras are homotopy algebras. Forum Mathematicum, 16(1):129–160, 2004.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Anne Pichereau. Poisson (co)homology and isolated singularities. Journal of Algebra, 299(2):747–777, 2006.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Anne Pichereau. Formal deformations of poisson structures in low dimensions. Pacific Journal of Mathematics, 239(01):105 – 133, 2009.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    James Dillon Stasheff. Homotopy associativity of H-spaces. I, II. Transactions of the American Mathematical Society, 108:293–312, 1963.CrossRefMathSciNetGoogle Scholar

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2010

Authors and Affiliations

  • Anne Pichereau

There are no affiliations available

Personalised recommendations