Advertisement

Quantizing deformation theory

  • John Terilla

Abstract

We describe a step toward quantizing deformation theory. The L operad is encoded in a Hochschild cocyle o1 in a simple universal algebra (P, o0). This Hochschild cocyle can be extended naturally to a star product ‚=o0+ħo12o2 +…. The algebraic structure encoded in * is the properad Ω(coFrob) which, conjecturally, controls a quantization of deformation theory—a theory for which Frobenius algebras replace ordinary commutative parameter rings.

Keywords

Complex Manifold Associative Algebra Deformation Theory String Topology Parameter Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Costello, T. Tradler, and M. Zeinalian. Closed string TCFT for Hermitian Calabi-Yau elliptic spaces. arXiv:0807.3052, 2008.Google Scholar
  2. 2.
    G. Drummond-Cole, J. Terilla, and T. Tradler. Algebras over cobar(cofrob). math.arXiv:0807.1241, 2008.Google Scholar
  3. 3.
    Y. Eliashberg, A. Givental, and H. Hofer. Introduction to symplectic field theory. math.SG/0010059, 2000.Google Scholar
  4. 4.
    V. Ginzberg and M. Kapranov. Koszul duality for operads. Duke J. Math, 76:203–272, 1994.CrossRefGoogle Scholar
  5. 5.
    J. Hirsh. Noncommutative deformation theory. in progress.Google Scholar
  6. 6.
    L. Katzarkov, M. Kontsevich, and T. Pantev. Hodge theoretic aspects of mirror symmetry, 2008.Google Scholar
  7. 7.
    M. Kontsevich. Deformation quantization of Poisson manifolds, I. Lett. Math. Phys., 66:157–216, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Kontsevich and Y. Soibelman. Notes on A algebras, A categories, and noncommutative geometry, I. arXiv:math/0606241, 2006, 2006.Google Scholar
  9. 9.
    M. Manetti. Extended deformation functors. Internat. Math. Res. Not., 14:719–756, 2002.CrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Merkulov and B. Vallette. Deformation theory of representations of prop(erad)s. math.arXiv:0707.0889, 2007.Google Scholar
  11. 11.
    J.-S. Park. Flat family of QFTs and deformations of d-algebras. hep-th/0308130, 2003, 2003.Google Scholar
  12. 12.
    J. S. Park, J. Terilla, and T. Tradler. Quantum backgrounds and QFT. Intl. Math. Res. Notices, 2009.Google Scholar
  13. 13.
    M. Schlessinger. Functors of Artin rings. Trans. Am. Math. Soc., 130:208–222, 1968.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    D. Sullivan and M. Chas. String topology. math.GT/9911159, 1999.Google Scholar
  15. 15.
    M. Sullivan, J. Terilla, and T. Tradler. Symplectic field theory and quantum backgrounds. J. Symplectic Geom., 6(4):379405, 2008.MathSciNetGoogle Scholar
  16. 16.
    B. Vallette. A Koszul duality for props. Trans. Amer. Math. Soc., 359:4865–4943, 2007.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2010

Authors and Affiliations

  • John Terilla

There are no affiliations available

Personalised recommendations