Skip to main content

An algebraic proof of Bogomolov-Tian-Todorov theorem

  • Chapter
Deformation Spaces

Abstract

We give a completely algebraic proof of the Bogomolov-Tian-Todorov theorem. More precisely, we shall prove that if X is a smooth projective variety with trivial canonical bundle defined over an algebraically closed field of characteristic 0, then the L -algebra governing infinitesimal deformations of X is quasi-isomorphic to an abelian differential graded Lie algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Barannikov, M. Kontsevich: Frobenius manifolds and formality of Lie algebras of polyvector fields. Internat. Math. Res. Notices 4 (1998) 201–215.

    Article  MathSciNet  Google Scholar 

  • F. Bogomolov: Hamiltonian Kählerian manifolds. Dokl. Akad. Nauk SSSR 243 (1978) 1101–1104. Soviet Math. Dokl. 19 (1979) 1462–1465.

    Google Scholar 

  • X.Z. Cheng, E. Getzler: Homotopy commutative algebraic structures. J. Pure Appl. Algebra 212 (2008) 2535–2542; arXiv:math.AT/0610912.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Clemens: Geometry of formal Kuranishi theory. Adv. Math. 198 (2005) 311–365.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Deligne, L. Illusie: Relévements modulo p 2 et décomposition du complexe de de Rham. Invent. Math. 89 (1987) 247–270.

    Article  MATH  MathSciNet  Google Scholar 

  • J.L. Dupont: Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology 15 (1976) 233–245.

    Article  MATH  MathSciNet  Google Scholar 

  • J.L. Dupont: Curvature and characteristic classes. Lecture Notes in Mathematics 640, Springer-Verlag, New York Berlin, (1978).

    Google Scholar 

  • S. Eilenberg, J.A. Zilber: Semi-simplicial complexes and singular homology. Ann. of Math. (2) 51 (1950) 499–513.

    Article  MathSciNet  Google Scholar 

  • G. Faltings: p-adic Hodge theory. J. Amer. Math. Soc. 1 (1988) 255–299.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Fantechi, M. Manetti: On the T 1 -lifting theorem. J. Algebraic Geom. 8 (1999) 31–39.

    MATH  MathSciNet  Google Scholar 

  • Y. Félix, S. Halperin, J. Thomas: Rational homotopy theory. Graduate texts in mathematics 205, Springer-Verlag, New York Berlin, (2001).

    Google Scholar 

  • D. Fiorenza, M. Manetti: L algebras, Cartan homotopies and period maps. Preprint arXiv:math/0605297.

    Google Scholar 

  • D. Fiorenza, M. Manetti: L structures on mapping cones. Algebra Number Theory, 1, (2007), 301–330; arXiv:math.QA/0601312.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Fiorenza, M. Manetti: A period map for generalized deformations. J. Noncommut. Geom. (to appear); arXiv:0808.0140v1.

    Google Scholar 

  • D. Fiorenza, M. Manetti, E. Martinengo: Semicosimplicial DGLAs in deformation theory. Preprint arXiv:0803.0399v1.

    Google Scholar 

  • K. Fukaya: Deformation theory, homological algebra and mirror symmetry. Geometry and physics of branes (Como, 2001), Ser. High Energy Phys. Cosmol. Gravit., IOP Bristol, (2003), 121–209. Electronic version available at http://www.math.kyoto-u.ac.jp/%7Efukaya/como.dvi

  • E. Getzler: Lie theory for nilpotent L -algebras. Ann. of Math. 170 (1), (2009) 271–301; arXiv:math/0404003v4. Ann. of Math., 170 (1), (2009), 271–301. arXiv:math/0404003v4.

    Google Scholar 

  • W.M. Goldman, J.J. Millson: The deformation theory of representations of fundamental groups of compact kähler manifolds. Publ. Math. I.H.E.S. 67 (1988) 43–96.

    MATH  MathSciNet  Google Scholar 

  • W.M. Goldman, J.J. Millson: The homotopy invariance of the Kuranishi space. Illinois J. Math. 34 (1990) 337–367.

    MATH  MathSciNet  Google Scholar 

  • V. Hinich: Descent of Deligne groupoids. Internat. Math. Res. Notices 1997, no. 5, 223–239.

    Google Scholar 

  • V. Hinich, V. Schechtman: Deformation theory and Lie algebra homology. I. Algebra Colloq. 4 (1997), no. 2, 213–240.

    MATH  MathSciNet  Google Scholar 

  • V. Hinich, V. Schechtman: Deformation theory and Lie algebra homology. II. Algebra Colloq. 4 (1997), no. 3, 291–316.

    MATH  MathSciNet  Google Scholar 

  • F. Hirzebruch: Topological Methods in Algebraic Geometry. Classics in Mathematics, Springer-Verlag, New York Berlin, (1978).

    Google Scholar 

  • J. Huebschmann, T. Kadeishvili: Small models for chain algebras. Math. Z. 207 (1991) 245–280.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Iacono: Differential Graded Lie Algebras and Deformations of Holomorphic Maps. Phd Thesis (2006) arXiv:math.AG/0701091.

    Google Scholar 

  • D. Iacono: A semiregularity map annihilating obstructions to deforming holomorphic maps. Canad. Math. Bull. (to appear); arXiv:0707.2454.

    Google Scholar 

  • D. Iacono: L -algebras and deformations of holomorphic maps. Int. Math. Res. Not. 8 (2008) 36 pp. arXiv:0705.4532.

    Google Scholar 

  • T. V. Kadeishvili: The algebraic structure in the cohomology of A(∞)-algebras. Soobshch. Akad. Nauk Gruzin. SSR 108 (1982), 249–252.

    MATH  MathSciNet  Google Scholar 

  • Y. Kawamata: Unobstructed deformations - a remark on a paper of Z. Ran. J. Algebraic Geom. 1 (1992), 183–190.

    MATH  MathSciNet  Google Scholar 

  • K. Kodaira: Complex manifold and deformation of complex structures. Springer-Verlag (1986).

    Google Scholar 

  • M. Kontsevich: Deformation quantization of Poisson manifolds, I. Letters in Mathematical Physics 66 (2003) 157–216; arXiv:q-alg/9709040.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Kontsevich, Y. Soibelman: Deformations of algebras over operads and Deligne’s conjecture. In: G. Dito and D. Sternheimer (eds) Conférence Moshé Flato 1999, Vol. I (Dijon 1999), Kluwer Acad. Publ., Dordrecht (2000) 255–307; arXiv:math.QA/0001151.

    Google Scholar 

  • M. Kontsevich, Y. Soibelman: Homological mirror symmetry and torus fibrations. K. Fukaya, (ed.) et al., Symplectic geometry and mirror symmetry. Proceedings of the 4th KIAS annual international conference, Seoul, South Korea, August 14–18, 2000. Singapore: World Scientific. (2001) 203–263; arXiv:math.SG/0011041.

    Google Scholar 

  • T. Lada, M. Markl: Strongly homotopy Lie algebras. Comm. Algebra 23 (1995) 2147–2161; arXiv:hep-th/9406095.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Lada, J. Stasheff: Introduction to sh Lie algebras for physicists. Int. J. Theor. Phys. 32 (1993) 1087–1104; arXiv:hep-th/9209099.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Manetti: Deformation theory via differential graded Lie algebras. In Seminari di Geometria Algebrica 1998–1999 Scuola Normale Superiore (1999); arXiv:math.AG/0507284.

    Google Scholar 

  • M. Manetti: Extended deformation functors. Int. Math. Res. Not. 14 (2002) 719–756; arXiv:math.AG/9910071.

    Article  MathSciNet  Google Scholar 

  • M. Manetti: Cohomological constraint to deformations of compact Kähler manifolds. Adv. Math. 186 (2004) 125–142; arXiv:math.AG/0105175.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Manetti: Lectures on deformations of complex manifolds. Rend. Mat. Appl. (7) 24 (2004) 1–183; arXiv:math.AG/0507286.

    MathSciNet  Google Scholar 

  • M. Manetti: Lie description of higher obstructions to deforming submanifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. 6 (2007) 631–659; arXiv:math.AG/0507287.

    MATH  MathSciNet  Google Scholar 

  • M. Manetti: Differential graded Lie algebras and formal deformation theory. In Algebraic Geometry: Seattle 2005. Proc. Sympos. Pure Math. 80 (2009) 785–810.

    MathSciNet  Google Scholar 

  • S.A. Merkulov: Strong homotopy algebras of a Kähler manifold. Intern. Math. Res. Notices (1999) 153–164; arXiv:math.AG/9809172.

    Google Scholar 

  • V. Navarro Aznar: Sur la théorie de Hodge-Deligne. Invent. Math. 90 (1987) 11–76.

    Article  MATH  MathSciNet  Google Scholar 

  • J. P. Pridham: Deformations via Simplicial Deformation Complexes. Preprint arXiv:math/0311168v6.

    Google Scholar 

  • D. Quillen: Rational homotopy theory. Ann. of Math. 90 (1969) 205–295.

    Article  MathSciNet  Google Scholar 

  • Z. Ran: Deformations of manifolds with torsion or negative canonical bundle. J. Algebraic Geom. 1 (1992), 279–291.

    MATH  MathSciNet  Google Scholar 

  • V. Schechtman: Local structure of moduli spaces. arXiv:alg-geom/9708008.

    Google Scholar 

  • M. Schlessinger, J. Stasheff: Deformation Theory and Rational Homotopy Type. Preprint (1979).

    Google Scholar 

  • E. Sernesi: Deformations of Algebraic Schemes. Grundlehren der mathematischen Wissenschaften, 334, Springer-Verlag, New York Berlin, (2006).

    Google Scholar 

  • G. Tian: Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric. Mathematical Aspects of String Theory (San Diego, 1986), Adv. Ser. Math. Phys. 1, World Sci. Publishing, Singapore, (1987), 629–646.

    Google Scholar 

  • A.N. Todorov: The Weil-Petersson geometry of the moduli space of SU (n ≥ 3) (Calabi-Yau) Manifolds I. Commun. Math. Phys., 126, (1989), 325–346.

    Article  MATH  Google Scholar 

  • C.A. Weibel: An introduction to homological algebra. Cambridge Studies in Advanced Mathematics 38, Cambridge Univesity Press, Cambridge, (1994).

    Google Scholar 

  • H. Whitney: Geometric integration theory. Princeton University Press, Princeton, N. J., (1957).

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Iacono, D., Manetti, M. (2010). An algebraic proof of Bogomolov-Tian-Todorov theorem. In: Abbaspour, H., Marcolli, M., Tradler, T. (eds) Deformation Spaces. Vieweg+Teubner. https://doi.org/10.1007/978-3-8348-9680-3_5

Download citation

Publish with us

Policies and ethics