On the Hochschild and Harrison (co)homology of C-algebras and applications to string topology

  • Grégory Ginot


We study Hochschild (co)homology of commutative and associative up to homotopy algebras with coefficient in a homotopy analogue of symmetric bimodules. We prove that Hochschild (co)homology is equipped with λ-operations and Hodge decomposition generalizing the results in [GS1] and [Lo1] for strict algebras. The main application is concerned with string topology: we obtain a Hodge decomposition compatible with a non-trivial BV-structure on the homology H *(LX) of the free loop space of a triangulated Poincaré-duality space. Harrison (co)homology of commutative and associative up to homotopy algebras can be defined similarly and is related to the weight 1 piece of the Hodge decomposition. We study Jacobi-Zariski exact sequence for this theory in characteristic zero. In particular, we define (co)homology of relative A -algebras, i.e., A -algebras with a C -algebra playing the role of the ground ring. We also give a relation between the Hodge decomposition and homotopy Poisson-algebras cohomology.


Spectral Sequence String Topology Commutative Algebra Algebra Structure Hochschild Cohomology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. H. Baues, The double bar and cobar constructions, Compos. Math. 43 (1981), 331–341MATHMathSciNetGoogle Scholar
  2. N. Bergeron, L. Wolfgang The decomposition of Hochschild cohomology and Gerstenhaber operations, J. Pure Appl. Algebra 79 (1995) 109–129CrossRefMathSciNetGoogle Scholar
  3. M. Chas, D. Sullivan String Topology, preprint GT/9911159 (1999)Google Scholar
  4. R. Cohen Multiplicative properties of Atiyah duality, Homology, Homotopy, and its Applications, vol 6 no. 1 (2004), 269–281MATHGoogle Scholar
  5. R. Cohen, V. Godin A polarized view to string topology, Topology, Geometry, and Quantum Field theory, Lond. Math. Soc. lecture notes vol. 308 (2004), 127–154CrossRefMathSciNetGoogle Scholar
  6. R. Cohen, J.D.S. Jones A homotopic realization of string topology, Math. Annalen, vol 324. 773–798 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. R. Cohen, J.D.S. Jone, J. Yan The loop homology algebra of spheres and projective spaces, in Categorical Decomposition Techniques in Algebraic Topology, Prog. Math. 215 (2004), 77–92Google Scholar
  8. A. Elmendorf, I. Kriz, M. Mandell, J.P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, 47. American Mathematical Society, Providence, RI, 1997.Google Scholar
  9. Y. Félix, Y. Thomas, M. Vigué The Hochschild cohomology of a closed manifold, Publ. IHES, 99, (2004), 235–252MATHCrossRefGoogle Scholar
  10. Y. Félix, Y. Thomas, M. Vigué Rational string topology, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 1, 123–156.MATHMathSciNetGoogle Scholar
  11. B. Fresse, Homologie de Quillen pour les algèbres de Poisson, C.R. Acad. Sci. Paris Sér. I Math. 326(9) (1998), 1053–1058MATHMathSciNetGoogle Scholar
  12. B. Fresse, Théorie des opérades de Koszul et homologie des algèbres de Poisson, preprintGoogle Scholar
  13. M. Gerstenhaber, The Cohomology Structure Of An Associative ring Ann. Maths. 78(2) (1963)Google Scholar
  14. M. Gerstenhaber, S. Schack, A Hodge-type decomposition for commutative algebra cohomology J. Pure Appl. Algebra 48 (1987), no. 3, 229–247MATHCrossRefMathSciNetGoogle Scholar
  15. M. Gerstenhaber, S. Schack, The shuffle bialgebra and the cohomology of commutative algebras J. Pure Appl. Algebra 70 (1991), 263–272MATHCrossRefMathSciNetGoogle Scholar
  16. M. Gerstenhaber, A. Voronov, Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices (1995), no. 3, 141–153Google Scholar
  17. E. Getzler, J.D.S. Jones, A -algebras and the cyclic bar complex, Illinois J. Math. 34 (1990) 12–159MathSciNetGoogle Scholar
  18. E. Getzler, J.D.S. Jones Operads, homotopy algebra and iterated integrals for double loop spaces, preprint hep-th/9403055 (1994)Google Scholar
  19. G. Ginot, Homologie et modèle minimal des algèbres de Gerstenhaber, Ann. Math. Blaise Pascal 11 (2004), no. 1, 95–127MATHMathSciNetGoogle Scholar
  20. G. Ginot, G. Halbout A formality theorem for Poisson manifold, Let. Math. Phys. 66 (2003) 37–64MATHCrossRefMathSciNetGoogle Scholar
  21. G. Ginot, G. Halbout Lifts of G -morphism to C and L -morphisms, Proc. Amer. Math. Soc. 134 (2006) 621–630.MATHCrossRefMathSciNetGoogle Scholar
  22. V. Ginzburg, M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), No 1, 203–272MATHCrossRefMathSciNetGoogle Scholar
  23. A. Hamilton, A. Lazarev Homotopy algebras and noncommutative geometry, preprint, math.QA/0410621Google Scholar
  24. A. Hamilton, A. Lazarev Cohomology theories for homotopy algebras and noncommutative geometry, preprint, math.QA/0707.2311Google Scholar
  25. A. Hamilton, A. Lazarev Symplectic C -algebras, preprint, math.QA/0707.3951.Google Scholar
  26. A. Hamilton, A. Lazarev Symplectic A -algebras and string topology operations, preprint, math.QA/0707.4003.Google Scholar
  27. H. Hiller, λ-rings and algebraic K-theory. J. Pure Appl. Algebra 20 (1981), no. 3, 241–266.MATHCrossRefMathSciNetGoogle Scholar
  28. J. Huebschmann, J. Stasheff Formal solution of the master equation via HPT and deformation theory, Forum. Math. 14 (2002), no. 6, 847–868MATHCrossRefMathSciNetGoogle Scholar
  29. J.D.S. Jones Cyclic homology and equivariant homology, Inv. Math. 87, no.2 (1987), 403–423MATHCrossRefGoogle Scholar
  30. T. Kadeishvili On the homology theory of fiber spaces, Russian Mathematics Surveys 6 (1980), 231–238.CrossRefGoogle Scholar
  31. T. Kimura, J. Stasheff, A. Voronov Homology of moduli spaces of curves and commutative homotopy algebras, Comm. Math. Phys. 171 (1995), 1–25MATHCrossRefMathSciNetGoogle Scholar
  32. J.-L. Loday, Opérations sur l’homologie cyclique des algèbres commutatives, Invent. Math. 96 (1989), No. 1, 205–230MATHCrossRefMathSciNetGoogle Scholar
  33. J.-L. Loday, Cyclic homology, Springer Verlag (1993)Google Scholar
  34. J.-L. Loday, Série de Hausdorff, idempotents Eulériens et algèbres de Hopf, Expo. Math. 12 (1994), 165–178MATHMathSciNetGoogle Scholar
  35. Y. Manin, Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, Colloquium publications 47 (1991), American Mathematical SocietyGoogle Scholar
  36. M. Mandell, J.P. May, S. Schwede, B. Shipley, Model categories of diagram spectra, Proc. London Math. Soc. (3) 82 (2001), no. 2, 441–512.MATHCrossRefMathSciNetGoogle Scholar
  37. L. Menichi Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras, K-Theory 32 (2004), 231–251.MATHCrossRefMathSciNetGoogle Scholar
  38. S. Merkulov, De Rham model for string topology, Int. Math. Res. Not. 2004, no. 55, 2955–2981.Google Scholar
  39. F. Patras, La décomposition en poids des algèbres de Hopf, Ann. Inst. Fourier 43 (1993), No. 4, 1067–1087MATHMathSciNetGoogle Scholar
  40. J.D. Stasheff, Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc. 108 (1963), 275–292CrossRefMathSciNetGoogle Scholar
  41. V. Smirnov, Simplicial and operad methods in algebraic topology, Transl. Math. Monographs 198, American Mathematical Society (2001)Google Scholar
  42. D. Sullivan, Appendix to Infinity structure of Poincaré duality spaces, Algebr. Geom. Topol. 7 (2007), 233–260.MATHCrossRefMathSciNetGoogle Scholar
  43. D. Tamarkin, Another proof of M. Kontsevich’s formality theorem, math.QA/9803025Google Scholar
  44. T. Tradler, Infinity-inner-products on a A-infinity-algebras, preprint arXiv AT:0108027Google Scholar
  45. T. Tradler, The BV Algebra on Hochschild Cohomology Induced by Infinity Inner Products, preprint arXiv QA:0210150Google Scholar
  46. T. Tradler, M. Zeinalian Infinity structure of Poincaré duality spaces, Algebr. Geom. Topol. 7 (2007), 233–260.MATHCrossRefMathSciNetGoogle Scholar
  47. T. Tradler, M. Zeinalian On the cyclic Deligne conjecture, J. Pure Appl. Algebra 204 (2006), no. 2, 280–299MATHCrossRefMathSciNetGoogle Scholar
  48. M. Vigué Décompositions de l’homologie cyclique des algèbres différentielles graduées, K-theory 4 (1991) -399–410MATHCrossRefMathSciNetGoogle Scholar
  49. J. Wu, M. Gerstenhaber, J. Stasheff, On the Hodge decomposition of differential graded bi-algebras J. Pure Appl. Algebra 162 (2001), no. 1, 103–125MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2010

Authors and Affiliations

  • Grégory Ginot

There are no affiliations available

Personalised recommendations