Skip to main content
  • 16k Accesses

Zusammenfassung

Reibung ist ein Bewegungswiderstand. Er äußert sich als Widerstandskraft sich berührender Körper gegen die Einleitung einer Relativbewegung (Ruhereibung, statische Reibung) oder deren Aufrechterhaltung (Bewegungsreibung, dynamische Reibung). Neben dieser „äußeren Reibung“ gibt es die „innere Reibung“ von Stoffen (Viskosität), sie gehört zur Rheologie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 4

  • Amontons, G.: De la Resistance Causée dans les Machines. Histoire Acad. Roy. Sci. Paris 12 (1699) 206.

    Google Scholar 

  • Andarelli, G.; Maugis, D.; Courtel, R.: Observation of dislocations created by friction on aluminium thin foils. Wear 23 (1973) 21.

    Article  Google Scholar 

  • Bowden, F. P.; Tabor, D.: The friction and lubrication of solids. (Part II). Oxford: Clarendon Press, 1964.

    Google Scholar 

  • Buckley, D. H.: Surface effects in adhesion, friction, wear and lubrication. Amsterdam: Elsevier, 1981, p. 389, 322.

    Google Scholar 

  • Carter, F. W.: On the action of a locomotive driving wheel. Proc. Roy. Soc. London A 112 (1926) 151.

    Article  Google Scholar 

  • Challen, J. M.; Oxley, P. L. B.: An explanation of the different regimes of friction and wear using asperity deformation models. Wear 53 (1979) 229.

    Article  Google Scholar 

  • Coulomb, E.: Théorie des machines simples. Mem. Math. Phys. Paris 10 (1785) 161.

    Google Scholar 

  • Czichos, H.: Die Energieverlustmechanismen der Rollreibung. Schmiertech. Tribol. 16 (1969) 62.

    Google Scholar 

  • Czichos, H.: Über den Zusammenhang zwischen Adhäsion und Elektronenstruktur von Metallen bei der Rollreibung im elastischen Bereich. Z. Angew. Phys. 27 (1969) 40.

    Google Scholar 

  • Czichos, H.: Festkörperreibung – Teilgebiet der Tribologie. Umschau 98 (1971) 116.

    Google Scholar 

  • Czichos, H.: The mechanism of the metallic adhesion bond. J. Phys. D, Appl. Phys. 5 (1972) 1890.

    Article  Google Scholar 

  • Czichos, H.: Systemanalyse und Physik tribologischer Vorgänge, Teil 1: Grundlagen, Teil 2: Anwendungen. Schmiertech. Tribol. 22 (1975) 126 und 23 (1976) 6.

    Google Scholar 

  • Czichos, H.: Tribology – a systems approach to the science and technology of friction, lubrication and wear. Amsterdam: Elsevier, 1978, p. 218, 341, 221.

    Google Scholar 

  • Derjaguin, B. V.; Smilga, V. P.: Electrostatic component of the rolling friction force moment. Wear 7 (1964) 270.

    Article  Google Scholar 

  • Drescher, H.: Die Mechanik der Reibung zwischen festen Körpern. VDI-Z. 101 (1959) 697.

    Google Scholar 

  • Eldredge, K. R.; Tabor, D.: The mechanisms of rolling friction. Proc. Roy. Soc. London A 229 (1955) 181.

    Article  Google Scholar 

  • Ferrante, J.: Exoelectron emission from a clean annealed magnesium single crystal during oxygen adsorption. ASLE Trans. 20 (1976) 328.

    Google Scholar 

  • Flom, D. G.; Bueche, A. M.: Theory of rolling friction for spheres. J. Appl. Phys. 30 (1959) 1725.

    Article  MATH  Google Scholar 

  • Gane, N.; Skinner, J.: The generation of dislocations in metals under a sliding contact and the dissipation of frictional energy. Wear 25 (1973) 381.

    Article  Google Scholar 

  • Green, A. P.: The plastic yielding of metal junctions due to combined shear and pressure. J. Mech. Phys. Solids 2 (1955) 197.

    Article  Google Scholar 

  • Greenwood, H.; Minshall, H.; Tabor, D.: Hysteresis losses in rolling and sliding friction. Proc. Roy. Soc. London A 259 (1961) 480.

    Article  Google Scholar 

  • Gümbel, L.: Reibung und Schmierung im Maschinenbau. Berlin: Krayn, 1925.

    MATH  Google Scholar 

  • Habig, K.-H.: Zur Struktur- und Orientierungsabhängigkeit der Adhäsion und der trockenen Gleitreibung von Metallen. Materialprüfung 10 (1968) 417.

    Google Scholar 

  • Hamilton, G. M.: Plastic flow in rollers loaded above the yield point. Proc. Inst. Mech. Engrs. 177 (1963) 667.

    Article  Google Scholar 

  • Harper, W. R.: Contact and frictional electrification. Oxford: Clarendon Press, 1967.

    Google Scholar 

  • Heathcote, H. L.: The ball bearing. Proc. Inst. Automotive Engrs. 15 (1921) 1569.

    Google Scholar 

  • Heilmann, P.; Rigney, D. A.: An energy-based model of friction and its application to coated systems. Wear 72 (1981) 195.

    Article  Google Scholar 

  • Heinicke, G.: Tribochemie. Berlin: Akademie-Verlag, 1984.

    Google Scholar 

  • Holland, J.: Die Grundlagen der Reibung und ihre Bedeutung für die Funktionsfähigkeit von Maschinenelementen, in: Reibung und Verschleiß von Werkstoffen, Bauteilen und Konstruktionen (Czichos, H., Federführender Autor). Grafenau: Expert-Verlag, 1982, S. 36.

    Google Scholar 

  • Kendall, K.: Rolling friction and adhesion between smooth solids. Wear 33 (1975) 351.

    Article  Google Scholar 

  • Kornfeld, M. J.: Frictional electrification. J. Phys. D, Appl. Phys. 9 (1976) 1183.

    Article  Google Scholar 

  • Kostetski, B. I.; Nazarenko, P. V.: Influence of changes of dislocation structure on the relation between friction and normal pressure. Soviet Physics Doklady 9 (1965) 1011.

    Google Scholar 

  • Lancaster, J. K.: A review of the influence of environmental humidity and water on friction, lubrication and wear. Tribology International 23 (1990) 371.

    Article  Google Scholar 

  • Landman, U.; Luedtke, W. D.; Burnham, N. A.; Colton, R. J.: Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture. Science 248 (1990) 454.

    Article  Google Scholar 

  • Marx, U.; Feller, H. G.: Korrelation zwischen tribologischen und mechanischen Eigenschaften. Metall 33 (1979) 380.

    Google Scholar 

  • Merwin, J. W.; Johnson, K. L.: Analysis of plastic deformation rolling contact. Proc. Inst. Mech. Engrs. 177 (1963) 676.

    Article  Google Scholar 

  • Nakayama, K.; Suzuki, N.; Hashimoto, H.: Triboemission of charged particles and photons from solid surfaces during frictional damage, in: Proc. Int. Conference on Frontiers of Tribology, April 1991. London: Physical Society.

    Google Scholar 

  • Nakayama, K. and Nevshupa, R.A.: Plasma generated in a gap around a sliding contact. J-Phys.D: Appl. Phys. 35 (2002) L53-L56

    Article  Google Scholar 

  • Nicholas, J. F.: The dissipation of energy during plastic deformation. Acta Metallurg. 7 (1959) 544.

    Article  Google Scholar 

  • Niedrig, H.: Physik, in: HÜTTE – Die Grundlagen der Ingenieurwissenschaften (Czichos, H., Herausgeber). Berlin: Springer, 1991.

    Google Scholar 

  • Ohmae, N.; Okuyama, T.; Tsukizoe, T.: Influence of electronic structure on the friction in vacuum of 3d transition metals in contact with copper. Tribology International 11 (1980) 177.

    Article  Google Scholar 

  • Poritsky, H.: Stresses and deflections of cylindrical bodies in contact with application to contact of gears and of locomotive wheel. Trans. ASME, J. Appl. Mech. 72 (1950) 191.

    MathSciNet  Google Scholar 

  • Rabinowicz, E.: Friction and wear of materials. New York: Wiley, 1965.

    Google Scholar 

  • Reynolds, O.: On rolling friction. Phil. Trans. Roy. Soc. London 116 (1876) 155.

    Google Scholar 

  • Sherif, H. A.: Effect of contact stiffness on the establishment of self-excited vibrations. Wear 141 (1991) 227.

    Article  Google Scholar 

  • Sin, H. C.; Saka, N.; Suh, N. P.: Abrasive wear mechanisms and the grit size effect. Wear 55 (1979) 163.

    Article  Google Scholar 

  • Suh, N. P.; Sin, H. C.: The genesis of friction. Wear 69 (1981) 91.

    Article  Google Scholar 

  • Suh, N. P.: Tribophysics. Englewood Cliffs: Prentice Hall, 1986, p. 73.

    Google Scholar 

  • Tabor, D.: Friction – the present state of our understanding. Trans. ASME F, J. Lubric. Technol. 103 (1981) 169.

    Google Scholar 

  • Thompson, P. S.; Robbins, M. O.: Origin of stick-slip motion in boundary lubrication. Science 250 (1990) 792.

    Article  Google Scholar 

  • Tolstoi, D. M.: Significance of the normal degree of freedom and natural normal vibrations in contact friction. Wear 10 (1967) 199.

    Article  Google Scholar 

  • Wortmann, J.; Feller, H. G.: Exo-Elektronenemission nach tribomechanischer Oberflächenbeanspruchung. Z. Metallkunde. 67 (1976) 688.

    Google Scholar 

  • Woska, R.; Barbehön, J.: Metallische Adhäsion unter trockener Reibung. Z. Werkstofftech. 13 (1982) 348.

    Article  Google Scholar 

  • Yoshioka, T.; Fujiwara, T.: Measurement of propagation initiation and propagation time of rolling contact fatigue cracks by observation of acoustic emission and vibration, in: Interface Dynamics (Dowson, D., Taylor, C. M., Godet, M. and Berthe, D., Editors). Amsterdam: Elsevier, 1988, p. 29.

    Google Scholar 

  • Zum Gahr, K. H.: Abrasiver Verschleiß metallischer Werkstoffe. Fortschr.-Berichte VDI-Z., Reihe 5, Nr. 57. Düsseldorf: VDI-Verlag, 1981.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Czichos, H., Habig, KH. (2010). Reibung. In: Tribologie-Handbuch. Vieweg+Teubner. https://doi.org/10.1007/978-3-8348-9660-5_4

Download citation

Publish with us

Policies and ethics