Skip to main content

Mahonia invasions in different habitats: local adaptation or general-purpose genotypes?

  • Chapter

Abstract

Rapid evolutionary adaptations and phenotypic plasticity have been suggested to be two important, but not mutually exclusive, mechanisms contributing to the spread of invasive species. Adaptive evolution in invasive plants has been shown to occur at large spatial scales to different climatic regions, but local adaptation at a smaller scale, e.g. to different habitats within a region, has rarely been studied. Therefore, we performed a case study on invasive Mahonia populations to investigate whether local adaptation may have contributed to their spread. We hypothesised that the invasion success of these populations is promoted by adaptive differentiation in response to local environmental conditions, in particular to the different soils in these habitats. To test this hypothesis, we carried out a reciprocal transplantation experiment in the field using seedlings from five Mahonia populations in Germany that are representative for the range of habitats invaded, and a greenhouse experiment that specifically compared the responses to the different soils of these habitats. We found no evidence for local adaptation of invasive Mahonia populations because seedlings from all populations responded similarly to different habitats and soils. In a second greenhouse experiment we examined genetic variation within populations, but seedlings from different maternal families did not vary in their responses to soil conditions. We therefore suggest that local adaptation of seedlings does not play a major role for the invasion success of Mahonia populations and that phenotypic plasticity, instead, could be an important trait in this stage of the life cycle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrendt, L.W.A. (1961) Berberis and Mahonia. A taxonomic revision. Journal of the Linnean Society of London, Botany, 57: 1–410.

    Google Scholar 

  • Allendorf, F.W. and Lundquist, L.L. (2003) Introduction: Population Biology, Evolution, and Control of Invasive Species. Conservation Biology, 17: 24–30.

    Article  Google Scholar 

  • Auge, H. (1997) Biologische Invasionen: Das Beispiel Mahonia aquifolium. In: Regeneration und nachhaltige Landnutzung — Konzepte für belastete Regionen (R. Feldmann, K. Henle, H. Auge, J. Flachowsky, S. Klotz and R. Kroenert, eds), pp. 124–129 Berlin: Springer Verlag.

    Google Scholar 

  • Auge, H. and Brandl, R. (1997) Seedling recruitment in the invasive clonal shrub, Mahonia aquifolium Pursh (Nutt.). Oecologia, 110: 205–211.

    Article  Google Scholar 

  • Auge, H., Brandl, R. and Fussy, M. (1997) Phenotypic variation, herbivory and fungal infection in the clonal shrub Mahonia aquifolium (Berberidaceae). Mitteldeutsche Gesellschaft für Allgemeine und Angewandte Entomology, 11: 747–750.

    Google Scholar 

  • Baker, H.G. (1965) Characteristics and Modes of Origin of Weeds. In: The Genetics of Colonizing Species: Proceedings of the First International Union of Biological Sciences Symposia on General Biology (H.G. Baker and G.L. Stebbins, eds), pp. 147–168 New York: Academic Press Inc.

    Google Scholar 

  • Bischoff, A., Cremieux, L., Smilauerova, M., Lawson, C.S., Mortimer, S.R., Dolezal, J., Lanta, V., Edwards, A.R., Brook, A.J., Macel, M., Leps, J., Steinger, T. and Müller-Schärer, H. (2006) Detecting local adaptation in widespread grassland species — the importance of scale and local plant community. Journal of Ecology, 94: 1130–1142.

    Article  Google Scholar 

  • Bone, E. and Farres, A. (2001) Trends and rates of microevolution in plants. Genetica, 112–113: 165–182.

    Article  Google Scholar 

  • Bossdorf, O., Auge, H., Lafuma, L., Rogers, W.E., Siemann, E. and Prati, D. (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 144: 1–11.

    Article  Google Scholar 

  • Bradshaw, A.D. (1960) Population differentiation in Agrostis tenuis SIBTH. New Phytologist, 59: 92–103.

    Article  Google Scholar 

  • Bradshaw, A.D. (1984) Ecological significance of genetic variation between populations. In: Perspectives on Plant Population Ecology (R. Dirzo and J. Sarukhán, eds), pp. 213–228 Sunderland: Sinauer Associates Inc.

    Google Scholar 

  • Burd, M. (1994) Bateman principle and plant reproduction — the role of pollen limitation in fruit and seed set. Botanical Review, 60: 83–139.

    Article  MathSciNet  Google Scholar 

  • Caroll, S.P. and Dingle, H. (1996) The biology of post-invasion events. Biological Conservation, 78: 207–214.

    Article  Google Scholar 

  • Conner, J.K. (2003) Artificial Selection: A powerful tool for ecologists. Ecology, 84: 1650–1660.

    Article  Google Scholar 

  • Ellis, A.G. and Weis, A.E. (2006) Coexistence and differentiation of ‘flowering stones’: the role of local adaptation to soil microenvironment. Journal of Ecology, 94: 322–335.

    Article  Google Scholar 

  • Ellstrand, N.C. and Schierenbeck, K.A. (2000) Hybridization as a stimulus for the evolution of invasiveness in plants. Proceedings of the National Academy of Sciences of the United States of America, 97: 7043–7050.

    Article  ADS  Google Scholar 

  • Falconer, D.S. and Mackay, T.F.C. (1996) Introduction to Quantitative Genetics, Essex: Longman.

    Google Scholar 

  • Fritsche, F. and Kaltz, O. (2000) Is the Prunella (Lamiaceae) hybrid zone structured by an environmental gradient? Evidence from a reciprocal transplant experiment. American Journal of Botany, 87: 995–1003.

    Article  Google Scholar 

  • Houtman, R.T., Kraan, K.J. and Kromhout, H. (2004) Mahonia aquifolium, M. repens M. x wagneri en hybriden. Dendroflora, 41: 42–69.

    Google Scholar 

  • Hufford, K.M. and Hamrick, J.L. (2003) Viability selection at three early life stages of the tropical tree, Platypodium elegans (Fabaceae, Papilionoideae). Evolution, 57: 518–526.

    Google Scholar 

  • Joshi, J., Schmid, B., Caldeira, M.C., Dimitrakopoulos, P.G., Good, J., Harris, R., Hector, A., Huss-Danell, K., Jumpponen, A., Minns, A., Mulder, C.P.H., Pereira, J.S., Prinz, A., Scherer-Lorenzen, M., Siamantziouras, A.-S.D., Terry, A.C., Troumbis, A.Y. and Lawton, J.H. (2001) Local adaptation enhances performance of common plant species. Ecology Letters, 4: 536–544.

    Article  Google Scholar 

  • Kawecki, T.J. and Ebert, D. (2004) Conceptual issues in local adaptation. Ecology Letters, 7: 1225–1241.

    Article  Google Scholar 

  • Kollmann, J. and Bañuelos, M.J. (2004) Latitudinal trends in growth and phenology of the invasive alien plant Impatiens glandulifera (Balsaminaceae). Diversity and Distributions, 10: 377–385.

    Article  Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. (2006) World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15: 259–263.

    Article  ADS  Google Scholar 

  • Kowarik, I. (1992) Einführung und Ausbreitung nichteinheimischer Gehölzarten in Berlin und Brandenburg. Verhandlungen Botanischer Vereine Berlin Brandenburg, 3: 1–188.

    Google Scholar 

  • Lawrence, M.J. (1984) The genetical analysis of ecological traits. In: Evolutionary Ecology (B. Shorrocks, eds), pp. 27–63 Oxford: Blackwell Scientific.

    Google Scholar 

  • Levin, D.A. (1988) Local differentiation and the breeding structure of plant populations. In: Plant Evolutionary Biology (L.D. Gottlieb and S.K. Jain, eds), pp. 305–329 London: Chapman & Hall.

    Google Scholar 

  • Linhart, Y.B. and Grant, M.C. (1996) Evolutionary significance of local genetic differentiation in plants. Annual Review of Ecology and Systematics, 27: 237–277.

    Article  Google Scholar 

  • Lohmeyer, W and Sukopp, H. (1992) Agriophyten in der Vegetation Mitteleuropas. Schriftenreihe für Vegetationskunde, Vol. 25, Bonn-Bad Godesberg: Bundesforschungsanstalt für Naturschutz und Landschaftsökologie.

    Google Scholar 

  • Lynch, M. and Walsh, B. (1998) Genetics and Analysis of Quantitative Traits, Sunderland: Sinauer Associates, Inc. Publishers.

    Google Scholar 

  • McGraw, J.B. and Antonovics, J. (1983) Experimental ecology of Dryas octopetala ecotypes. 1.Ecotypic differentiation and life-cycle stages of selection. Journal of Ecology, 71: 879–897.

    Article  Google Scholar 

  • Monzingo, H.N. (1987) Shrubs of the Great Basin, Reno: University of Nevada Press.

    Google Scholar 

  • Parker, I.M., Rodriguez, J. and Loik, M.E. (2003) An evolutionary approach to understanding the biology of invasions: Local adaptation and general-purpose genotypes in the weed Verbascum thapsus. Conservation Biology, 17: 59–72.

    Article  Google Scholar 

  • Primack, R.B. and Kang, H. (1989) Measuring fitness and natural selection in wild plant populations. Annual Review of Ecology and Systematics, 20: 367–396.

    Article  Google Scholar 

  • Rajakaruna, N., Siddiqi, M.Y., Whitton, J., Bohm, B.A. and Glass, A.D.M. (2003) Differential responses to Na+/K+ and Ca2+/Mg2+ in two edaphic races of the Lasthenia californica (Asteraceae) complex: A case for parallel evolution of physiological traits. New Phytologist, 157: 93–103.

    Article  Google Scholar 

  • Rice, K.J. and Mack, R.N. (1991) Ecological Genetics of Bromus tectorum. 3. the Demography of Reciprocally Sown Populations. Oecologia, 88: 91–101.

    Article  Google Scholar 

  • Richards, C.L., Bossdorf, O., Muth, N.Z., Gurevitch, J. and Pigliucci, M. (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9: 981–993.

    Article  Google Scholar 

  • Sakai, A.K., Allendorf, F.W., Holt, J.S., Lodge, D.M., Molofsky, J., With, K.A., Baughman, S., Cabin, R.J., Cohen, J.E., Ellstrand, N.C., McCauley, D.E., O’Neil, P., Parker, I.M., Thompson, J.N. and Weller, S.G. (2001) The population biology of invasive species. Annual Review of Ecology and Systematics, 32: 305–332.

    Article  Google Scholar 

  • Sawada, S., Nakajima, Y., Tsukuda, M., Sasaki, K., Hazama, Y., Futatsuya, M. and Watanabe, A. (1994) Ecotypic differentiotion of dry matter production processes in relation to survivorship and reproductive potential in Plantago asiatica populations along climatic gradients. Functional Ecology, 8: 400–409.

    Article  Google Scholar 

  • Schlichting, C.D. (1986) The evolution of phenotypic plasticity in plants. Annual Review of Ecology and Systematics, 17: 667–693.

    Article  Google Scholar 

  • Schlichting, E., Blume, H.-P. and Stahr, K. (1995) Bodenkundliches Praktikum, Berlin: Blackwell Wissenschafts-Verlag.

    Google Scholar 

  • Sexton, J.P., McKay, J.K. and Sala, A. (2002) Plasticity and genetic diversity may allow Saltcedar to invade cold climates in North America. Ecological Applications, 12: 1652–1660.

    Article  Google Scholar 

  • Snaydon, R.W. (1961) Competitive ability of natural populations of Trifolium repens and its relation to differential response to soil factors. Annals of Human Genetics, 25 177.

    Google Scholar 

  • Sokal, R.R. and Rohlf, F.J. (1995) Biometry, New York: W.H. Freeman and Company.

    Google Scholar 

  • Stockwell, C.A., Hendry, A.P. and Kinnison, M.T. (2003) Contemporary evolution meets conservation biology. Trends in Ecology & Evolution, 18: 94–101.

    Article  Google Scholar 

  • Thompson, J.N. (1998) The population biology of coevolution. Researches on Population Ecology, 40: 159–166.

    Article  Google Scholar 

  • Turkington, R. and Harper, J.L. (1979) Growth, distribution and neighbor relationships of Trifolium repens in a permanent pasture. 4. Fine-scale biotic differentiation. Journal of Ecology, 67: 245–254.

    Article  Google Scholar 

  • van de Laar, H.J. (1975) Mahonia en Mahoberberis. Dendroflora, 11/12: 19–33.

    Google Scholar 

  • Ward, J.K., Antonovics, J., Thomas, R.B. and Strain, B.R. (2000) Is atmospheric CO2 a selective agent on model C-3 annuals? Oecologia, 123: 330–341.

    Article  Google Scholar 

  • Waser, N.M. and Price, M.V. (1985) Reciprocal transplant experiments with Delphinium nelsonii (Ranunculaceae): Evidence for local adaptation. American Journal of Botany, 72: 1726–1732.

    Article  Google Scholar 

  • Weaver, S.E. and Dirks, V.A. (1984) Variation and climatic adaptation in northern populations of Datura stramonium. Canadian Journal of Botany, 63: 1303–1308.

    Article  Google Scholar 

  • Weber, E. and Schmid, B. (1998) Latitudinal population differentiation in two species of Solidago (Asteraceae) introduced into Europe. American Journal of Botany, 85 1110–1121.

    Article  Google Scholar 

  • Wieneke, S., Prati, D., Brandl, R., Stöckling, J. and Auge, H. (2004) Genetic variation in Sanguisorba minor after 6 years in situ selection under elevated CO2. Global Change Biology, 10: 1389–1401.

    Article  Google Scholar 

  • Zeitlhöfler, Andreas (2002) Mahonia aquifolium — Die Gemeine Mahonie. http://www.garteninfos.de/wildobst/Dipl4-1 1.html.

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Vieweg+Teubner | GWV Fachverlage GmbH, Wiesbaden

About this chapter

Cite this chapter

(2009). Mahonia invasions in different habitats: local adaptation or general-purpose genotypes?. In: Invasion Success by Plant Breeding. Vieweg+Teubner. https://doi.org/10.1007/978-3-8348-9563-9_5

Download citation

Publish with us

Policies and ethics