Genetic relationships among three native North-American Mahonia species, invasive Mahonia populations from Europe, and commercial cultivars


Horticulture is one of the most important pathways for plant invasion. We used microsatellite markers to reveal the impact of plant breeding on Mahonia aquifolium, an invasive ornamental shrub. Since it was bred by hybridisation with the related species M. repens and M. pinnata, we compared populations of the three native species, various commercial cultivars and invasive populations. Invasive populations and cultivars were genetically differentiated from the native groups, but differences did not result from genetic bottlenecks. In cultivars but not in invasive populations, we proved genes from M. pinnata. No significant amount of M. repens genes were found in cultivars and invasive populations, but this result has to be viewed with caution because of the close relationship between native M. aquifolium and M. repens. We conclude that the evolution of invasive Mahonia populations was a result of restriction of gene pool during introduction, secondary release, and artificial selection, in combination with an increase of genetic diversity by plant breeders and by extensive gene flow.


Native Species Gene Pool Plant Invasion Principle Component Analysis Artificial Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrendt, L.W.A. (1961) Berberis and Mahonia. A taxonomic revision. Journal of the Linnean Society of London, Botany, 57: 1–410.Google Scholar
  2. Allendorf, F.W. and Lundquist, L.L. (2003) Introduction: Population Biology, Evolution, and Control of Invasive Species. Conservation Biology, 17: 24–30.CrossRefGoogle Scholar
  3. Auge, H. and Brandl, R. (1997) Seedling recruitment in the invasive clonal shrub, Mahonia aquifolium Pursh (Nutt.). Oecologia, 110: 205–211.CrossRefGoogle Scholar
  4. Barrett, S.C.H., and Richardson, B.J. (1986) Genetic attributes of invading species. In: Ecology of biological invasions (R.H. Groves and J.J. Burdon, eds), pp. 21–33 Cambridge: Cambridge University Press.Google Scholar
  5. Bossdorf, O., Auge, H., Lafuma, L., Rogers, W.E., Siemann, E. and Prati, D. (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 144: 1–11.CrossRefGoogle Scholar
  6. Bundesverband Deutscher Pflanzenzüchter e.V. (2007) Züchtung.
  7. Dehnen-Schmutz, K., Touza, J., Perrings, C. and Williamson, M. (2007) The horticultural trade and ornamental plant invasions in Britain. Conservation Biology, 21 224–231.CrossRefGoogle Scholar
  8. Dieringer, D. and Schlötterer, C. (2002) Microsatellite analyser (MSA): a platform independent analysis tool for large micro satellite data sets. Molecular Ecology Notes, 3: 167–169.CrossRefGoogle Scholar
  9. Durka, W., Bossdorf, O., Prati, D. and Auge, H. (2005) Molecular evidence for multiple introduction of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Molecular Ecology, 14: 1697–1706.CrossRefGoogle Scholar
  10. Ellstrand, N.C. and Schierenbeck, K.A. (2000) Hybridization as a stimulus for the evolution of invasiveness in plants. Proceedings of the National Academy of Sciences of the United States of America, 97: 7043–7050.CrossRefADSGoogle Scholar
  11. Evanno, G., Regnaut, S. and Goudet, J. (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14: 2611–2620.CrossRefGoogle Scholar
  12. Goudet, J. (1995) FSTAT (Version 1.2): A computer program to calculate F- statistics. Journal of Heredity, 86: 485–486.Google Scholar
  13. Gray, A.J. (1986) Do invading species have definable genetic characteristics? Philosophical Transactions of The Royal Society of London, 314: 655–674.CrossRefADSGoogle Scholar
  14. Günther, H. (1979) Schöne Blütengehölze, Berlin: VEB Deutscher Landwirtschaftsverlag DDR.Google Scholar
  15. Hollingsworth, M.L., Hollingsworth, P.M., Jenkins, G.I., Bailey, J.P. and Ferris, C. (1998) The use of molecular markers to study patterns of genotypic diversity in some invasive alien Fallopia spp. (Polygonaceae). Molecular Ecology, 7: 1681–1691.CrossRefGoogle Scholar
  16. Houtman, R.T., Kraan, K.J. and Kromhout, H. (2004) Mahonia aquifolium, M. repens, M. x wagneri en hybriden. Dendroflora, 41: 42–69.Google Scholar
  17. Kim, Y.-D., Kim, S.-H. and Landrum, L.R. (2004) Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae). Journal of Plant Research, 117: 175–182.CrossRefGoogle Scholar
  18. Kitajima, K., Fox, A.M., Sato, T. and Nagamatsu, D. (2006) Cultivar selection prior to introduction may increase invasiveness: evidence from Ardisia crenata. Biological Invasions, 8: 1471–1482.CrossRefGoogle Scholar
  19. Klotz, S., Kühn, Ingolf, and Durka, Walter. (2002) BIOLFLOR — Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe für Vegetationskunde, Vol. 38, Bonn — Bad Godesberg: Bundesamt für Naturschutz.Google Scholar
  20. Kowarik, I. (1992) Einführung und Ausbreitung nichteinheimischer Gehölzarten in Berlin und Brandenburg. Verhandlungen Botanischer Vereine Berlin Brandenburg, 3: 1–188.Google Scholar
  21. Kowarik, I. (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Plant Invasions — General Aspects and Special Problems (P. Pysek, K. Prach, M. Rejmanek and M. Wade, eds), pp. 15–38 Amsterdam: Academic Publishing.Google Scholar
  22. Kowarik, I. (2005) Urban ornamentals escaped from cultivation. In: Crop Ferality and Volunteerism (J. Gressel, eds), pp. 97–121 Boca Raton: CRC Press.CrossRefGoogle Scholar
  23. Laferriere, J. (1997) Transfer of specific and infraspecific taxa from Mahonia to Berberis (Berberidaceae). Botanicheskii Zhurnal, 82: 95–99.Google Scholar
  24. Lodge, D.M. (1993) Biological Invasions: Lessons for Ecology. Trends in Ecology & Evolution, 8: 133–137.CrossRefGoogle Scholar
  25. Mack, R.N. (2000) Cultivation fosters plant naturalization by reducing environmental stochasticity. Biological Invasions, 2: 111–122.CrossRefADSGoogle Scholar
  26. Maron, J.L., Vila, M., Bommarco, R., Elmendorf, S. and Beardsley, P. (2004) Rapid evolution of an invasive plant. Ecological Monographs, 74: 261–280.CrossRefGoogle Scholar
  27. Milne, R.I. and Abbott, R.J. (2000) Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Molecular Ecology, 9: 541–556.CrossRefGoogle Scholar
  28. Monzingo, H.N. (1987) Shrubs of the Great Basin, Reno: University of Nevada Press.Google Scholar
  29. Munz, P. (1959) A California Flora, Berkeley: University of California Press.Google Scholar
  30. Neuffer, B., Auge, H., Mesch, H., Amarell, U. and Brandl, R. (1999) Spread of violets in polluted pine forests: morphological and molecular evidence for the ecological importance of interspecific hybridization. Molecular Ecology, 8: 365–377.Google Scholar
  31. Okada, M., Ahmad, R. and Jasieniuk, M. (2007) Microsatellite variation points to local landscape plantings as sources of invasive pampas grass (Cortaderia selloana) in California. Molecular Ecology, 16: 4956–4971.CrossRefGoogle Scholar
  32. Perrins, J., Fitter, A. and Williamson, M. (1993) Population biology and rates of invasion of three introduced Impatiens species in the British Isles. Journal of Biogeography, 20: 33–44.CrossRefGoogle Scholar
  33. Piper, C.V. (1906) Flora of the state of Washington. Contributions from the United States National Herbarium, 11: 282–283.Google Scholar
  34. Piper, C.V. (1922) The identification of Berberis aquifolium and Berberis repens. Contributions from the United States National Herbarium, 20: 437–451.Google Scholar
  35. Preston, C.D., Telfer, M.G., Arnold, H.R., Carey, P.D., Cooper, J.M., Dines, T.D., Hill, M.O., Pearman, D.A., Roy, D.B. and Smart, S.M. (2002) The changing flora of the UK, London: DEFRA: Oxford University Press.Google Scholar
  36. Pritchard, J.K., Stephens, M. and Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics, 155: 945–959.Google Scholar
  37. Pysek, P., Prach, K., and Smilauer, P. (1995) Relating invasion success to plant traits: An analysis of the Czech alien flora. In: Plant Invasions — General Aspects and Special Problems (P. Pysek, K. Prach, M. Rejmanek and M. Wade, eds), pp. 39–60 Amsterdam: SPB Academic Publishing.Google Scholar
  38. Rejmanek, M. (2000) Invasive plants: approaches and predictions. Austral Ecology, 25: 497–506.Google Scholar
  39. Rejmanek, M. (1996) A theory of seed plant invasiveness: The first sketch. Biological Conservation, 78: 171–181.CrossRefGoogle Scholar
  40. Richards, C.L., Bossdorf, O., Muth, N.Z., Gurevitch, J. and Pigliucci, M. (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9: 981–993.CrossRefGoogle Scholar
  41. Rosenberg, N.A. (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4: 137–138.CrossRefGoogle Scholar
  42. Roß, C. and Durka, W. (2006) Isolation and characterization of microsatellite markers in the invasive shrub Mahonia aquifolium (Berberidaceae) and their applicability in related species. Molecular Ecology Notes, 6: 948–950.CrossRefGoogle Scholar
  43. Arlequin Version (2.000): a software for population genetics data analysis 2000. Switzerland: Genetics and Biometry Laboratory University of Geneva.Google Scholar
  44. Soldaat, L.L., and Auge, H. (1998) Interactions between an invasive plant, Mahonia aquifolium, and a native phytophagous insect, Rhagoletis meigenii. In: Plant Invasions: Ecological mechanisms and human responses (U. Starfinger, K. Edwards, I. Kowarik and M. Williamson, eds), pp. 347–360 Leiden: Backhuys Publishers.Google Scholar
  45. Torrey, J., and Gray, A. (1838) Berberidaceae. In: Flora of North America. Oxford: Oxford University Press.Google Scholar
  46. van de Laar, H.J. (1975) Mahonia enMahoberberis. Dendroflora, 11/12: 19–33.Google Scholar
  47. Weir, B.S. and Cockerham, C.C. (1984) Estimating F-Statistics for the Analysis of Population-Structure. Evolution, 38: 1358–1370.CrossRefGoogle Scholar
  48. Whittemore, A.T. (1997) Berberis. In: Flora of North America pp. 276–286 New York, Oxford: Oxford University Press.Google Scholar
  49. Wright, S. (1951) The genetical structure of populations. Annals of Eugenics, 15: 323–354.Google Scholar

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH, Wiesbaden 2009

Personalised recommendations