Advertisement

Abstract

The invasion of new habitats by animals and plants represents a basic natural process as well as an anthropogenic phenomenon (Rejmanek 1996). However, the term “Biological Invasion” is used by most authors when species are spreading in a new area mediated by human activities (Auge et al. 2001; Richardson et al. 2000; Kowarik 1995; Pysek 1990). The distribution of species is, among other things, the result of natural dispersal that is limited by geographical or biological barriers. As human trade and transport increase, species can overcome these barriers and invade new areas. Thereby, the transport of species may either occur by accident, for instance in ballast water of ships or in packing material, or deliberately as introduction of cultivated plants or biocontrol species. The number of species that have been translocated has increased dramatically in the last 200 years (Mack et al. 2000; Williamson 1996; Drake et al. 1989). Out of 10 introduced species, one species may establish in the new area, and out of 10 established, one species likely causes problems in the new area (“tens rule”, Williamson and Fitter 1996). Today, biological invasions are considered one of the greatest threats to global biodiversity (Millenium Ecosystem Assessment 2005; Dukes and Mooney 1999). Native species can be suppressed or replaced by invasive species either directly by competition, or indirectly by alterations of the ecosystem as well as by alteration of the relations between organisms (e.g. Sperry et al. 2006; Belnap et al. 2005; Callaway and Aschehoug 2000). The dimension of the threat by invasive foreign species is quite perceptible. For instance in the South African bushland, 80 % of endangered species have become rare as a consequence of invasive species (Armstrong 1995). In addition to ecological problems, invasive species cause considerable economic costs. For the USA alone, Pimental et al. (2000) estimated $137 billion per year for economic loss. Thus, forecasting future invaders will help to arrest those invasions and is essential for maintaining biodiversity as well as saving enormous economic costs. Indeed, forecasting future invasion will not be possible until fundamental research in the field of invasion biology has identified how species become invasive and which processes are important for invasion success.

Keywords

Invasive Species Local Adaptation Phenotypic Plasticity Plant Invasion Biological Invasion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrendt, L.W.A. (1961) Berberis and Mahonia. A taxonomic revision. Journal of the Linnean Society of London, Botany, 57: 1–410.Google Scholar
  2. Allendorf, F.W. and Lundquist, L.L. (2003) Introduction: Population Biology, Evolution, and Control of Invasive Species. Conservation Biology, 17: 24–30.CrossRefGoogle Scholar
  3. Armstrong, S. (1995) Rare plants protect Cape’s water supplies. New Scientist, 11:8.Google Scholar
  4. Auge, H. (1997) Biologische Invasionen: Das Beispiel Mahonia aquifolium. In: Regeneration und nachhaltige Landnutzung — Konzepte für belastete Regionen (R. Feldmann, K. Henle, H. Auge, J. Flachowsky, S. Klotz and R. Kroenert, eds), pp. 124–129 Berlin: Springer Verlag.Google Scholar
  5. Auge, H. and Brandl, R. (1997) Seedling recruitment in the invasive clonal shrub, Mahonia aquifolium Pursh (Nutt.). Oecologia, 110: 205–211.CrossRefGoogle Scholar
  6. Auge, H., Brandl, R. and Fussy, M. (1997) Phenotypic variation, herbivory and fungal infection in the clonal shrub Mahonia aquifolium (Berberidaceae). Mitteldeutsche Gesellschaft für Allgemeine und Angewandte Entomology, 11: 747–750.Google Scholar
  7. Auge, H., Klotz, S., Prati, D. and Brandl, R. (2001) Die Dynamik von Pflanzeninvasionen: ein Spiegel grundlegender ökologischer und evolutionsbiologischer Prozesse. Rundgespräche der Kommission für Ökologie, 22: 41–58.Google Scholar
  8. Ayres, D.R., Garcia-Rossi, D., Davis, H.G. and Strong, D.R. (1999) Extent and degree of hybridization between exotic (Spartina alterniflora) and native (S. foliosa) cordgrass (Poaceae) in California, USA determined by random amplified polymorphic DNA (RAPDs). Molecular Ecology, 8: 1179–1186.CrossRefGoogle Scholar
  9. Baker, H.G. (1965) Characteristics and Modes of Origin of Weeds. In: The Genetics of Colonizing Species: Proceedings of the First International Union of Biological Sciences Symposia on General Biology (H.G. Baker and G.L. Stebbins, eds), pp. 147–168 New York: Academic Press Inc.Google Scholar
  10. Barrett, S.C.H., and Richardson, B.J. (1986) Genetic attributes of invading species. In: Ecology of biological invasions (R.H. Groves and J.J. Burdon, eds), pp. 21–33 Cambridge: Cambridge University Press.Google Scholar
  11. Belnap, J., Phillips, S.L., Sherrod, S.K. and Moldenke, A. (2005) Soil biota can change after exotic plant invasion: Does this affect ecosystem processes? Ecology, 86: 3007–3017.CrossRefGoogle Scholar
  12. Blossey, B. and Noetzold, R. (1995) Evolution of increased competitive ability in invasive nonindigenous plants: A hypothesis. Journal of Ecology, 83: 887–889.CrossRefGoogle Scholar
  13. Blows, M.W. and Hoffmann, A.A. (2005) A reassessment of genetic limits to evolutionary change. Ecology, 86: 1371–1384.CrossRefGoogle Scholar
  14. Bossdorf, O., Auge, H., Lafuma, L., Rogers, W.E., Siemann, E. and Prati, D. (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 144: 1–11.CrossRefGoogle Scholar
  15. Brown, J.S. and Eckert, C.G. (2005) Evolutionary increase in sexual and clonal reproductive capacity during biological invasion in an aquatic plant Butomus umbellatus (Butomaceae). American Journal of Botany, 92: 495–502.CrossRefGoogle Scholar
  16. Bundesverband Deutscher Pflanzenzüchter e.V. (2007) Züchtung. http://www.bdp-online.de/index.php?menu=3.
  17. Burd, M. (1994) Bateman principle and plant reproduction — the role of pollen limitation in fruit and seed set. Botanical Review, 60: 83–139.CrossRefMathSciNetGoogle Scholar
  18. Callaway, R.M. and Aschehoug, E.T. (2000) Invasive Plants Versus Their New and Old Neighbors: A Mechanism for Exotic Invasion. Science, 290: 521–523.CrossRefADSGoogle Scholar
  19. Caroll, S.P. and Dingle, H. (1996) The biology of post-invasion events. Biological Conservation, 78: 207–214.CrossRefGoogle Scholar
  20. Crawley, M.J. (1987) What makes a community invasible? In: Colonization, succession and stability (A.J. Gray, M.J. Crawley and P.J. Edwards, eds), pp. 429–453 Oxford: Blackwell Scientific Publications.Google Scholar
  21. Dehnen-Schmutz, K., Touza, J., Perrings, C. and Williamson, M. (2007) The horticultural trade and ornamental plant invasions in Britain. Conservation Biology, 21 224–231.CrossRefGoogle Scholar
  22. Drake, J.A., Mooney, H.A., di Castri, F., Groves, R.M., Kruger, F.J., Rejmanek, M. and Williamson, M. (1989) Biological Invasions: A Global Perspective, Chichester: John Wiley & Sons.Google Scholar
  23. Dukes, J.S. and Mooney, H.A. (1999) Does global change increase the success of biological invaders. Trends in Ecology & Evolution, 14: 135–139.CrossRefGoogle Scholar
  24. Dybdahl, M.F. and Kane, S.L. (2005) Adaptation vs. phenotypic plasticity in the success of a clonal invader. Ecology, 86: 1592–1601.CrossRefGoogle Scholar
  25. Ellstrand, N.C. and Schierenbeck, K.A. (2000) Hybridization as a stimulus for the evolution of invasiveness in plants. Proceedings of the National Academy of Sciences of the United States of America, 97: 7043–7050.CrossRefADSGoogle Scholar
  26. Erfmeier, A. and Bruelheide, H. (2004) Comparison of native and invasive Rhododendron ponticum populations: Growth, reproduction and morphology under field conditions. Flora, 199: 120–133.Google Scholar
  27. Griffiths, A.J.F., Miller, J.H., Suzuki, D.T., Lewontin, R.C. and Gelbart, W.M. (1997) An introduction to genetic analysis, New York: W. H. Freeman and Company.Google Scholar
  28. Hollingsworth, M.L., Hollingsworth, P.M., Jenkins, G.I., Bailey, J.P. and Ferris, C. (1998) The use of molecular markers to study patterns of genotypic diversity in some invasive alien Fallopia spp. (Polygonaceae). Molecular Ecology, 7: 1681–1691.CrossRefGoogle Scholar
  29. Houtman, R.T., Kraan, K.J. and Kromhout, H. (2004) Mahonia aquifolium, M. repens, M. x wagneri en hybriden. Dendroflora, 41: 42–69.Google Scholar
  30. Jakobs, G., Weber, E. and Edwards, P.J. (2004) Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range. Diversity and Distributions, 10: 11–19.CrossRefGoogle Scholar
  31. Kawecki, T.J. and Ebert, D. (2004) Conceptual issues in local adaptation. Ecology Letters, 7: 1225–1241.CrossRefGoogle Scholar
  32. Kim, Y.-D., Kim, S.-H. and Landrum, L.R. (2004) Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae). Journal of Plant Research, 117: 175–182.CrossRefGoogle Scholar
  33. Kitajima, K., Fox, A.M., Sato, T. and Nagamatsu, D. (2006) Cultivar selection prior to introduction may increase invasiveness: evidence from Ardisia crenata. Biological Invasions, 8: 1471–1482.CrossRefGoogle Scholar
  34. Klotz, S., Kühn, Ingolf, and Durka, Walter. (2002) BIOLFLOR — Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe für Vegetationskunde, Vol. 38, Bonn — Bad Godesberg: Bundesamt für Naturschutz.Google Scholar
  35. Kowarik, I. (1992) Einführung und Ausbreitung nichteinheimischer Gehölzarten in Berlin und Brandenburg. Verhandlungen Botanischer Vereine Berlin Brandenburg, 3: 1–188.Google Scholar
  36. Kowarik, I. (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Plant Invasions — General Aspects and Special Problems (P. Pysek, K. Prach, M. Rejmanek and M. Wade, eds), pp. 15–38 Amsterdam: Academic Publishing.Google Scholar
  37. Kowarik, I. (2004) Biologische Invasionen in Deutschland: zur Rolle nichteinheimischer Pflanzen. In: Biologische Invasionen. Herausforderung zum Handeln? (I. Kowarik and U. Starfinger, eds), pp. 5–24Google Scholar
  38. Kowarik, I. (2005) Urban ornamentals escaped from cultivation. In: Crop Ferality and Volunteerism (J. Gressel, eds), pp. 97–121 Boca Raton: CRC Press.CrossRefGoogle Scholar
  39. Laferriere, J. (1997) Transfer of specific and infraspecific taxa from Mahonia to Berberis (Berberidaceae). Botanicheskii Zhurnal, 82: 95–99.Google Scholar
  40. Linhart, Y.B. and Grant, M.C. (1996) Evolutionary significance of local genetic differentiation in plants. Annual Review of Ecology and Systematics, 27: 237–277.CrossRefGoogle Scholar
  41. Lynch, M. and Walsh, B. (1998) Genetics and Analysis of Quantitative Traits, Sunderland: Sinauer Associates, Inc. Publishers.Google Scholar
  42. Mack, R.N. (2000) Cultivation fosters plant naturalization by reducing environmental stochasticity. Biological Invasions, 2: 111–122.CrossRefADSGoogle Scholar
  43. Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M. and Bazzaz, F.A. (2000) Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications, 10: 689–710.CrossRefGoogle Scholar
  44. Mal, T.K. and Lovett-Doust, J. (2005) Phenotypic plasticity in vegetative and reproductive traits in an invasive weed, Lythrum salicaria (Lythraceae), in response to soil moisture. American Journal of Botany, 92: 819–825.CrossRefGoogle Scholar
  45. Maron, J.L., Vila, M., Bommarco, R., Elmendorf, S. and Beardsley, P. (2004) Rapid evolution of an invasive plant. Ecological Monographs, 74: 261–280.CrossRefGoogle Scholar
  46. Millenium Ecosystem Assessment. (2005) Ecosystems and Human Well-being: Biodiversity Synthesis., Washington, DC.: World Resources Institute.Google Scholar
  47. Milne, R.I. and Abbott, R.J. (2000) Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Molecular Ecology, 9: 541–556.CrossRefGoogle Scholar
  48. Monzingo, H.N. (1987) Shrubs of the Great Basin, Reno: University of Nevada Press.Google Scholar
  49. Mooney, H.A. and Cleland, E.E. (2001) The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences of the United States of America, 98: 5446–5451.CrossRefADSGoogle Scholar
  50. Munz, P. (1959) A California Flora, Berkeley: University of California Press.Google Scholar
  51. Parker, I.M., Rodriguez, J. and Loik, M.E. (2003) An evolutionary approach to understanding the biology of invasions: Local adaptation and general-purpose genotypes in the weed Verbascum thapsus. Conservation Biology, 17: 59–72.CrossRefGoogle Scholar
  52. Pimentel, D., Lach, L., Zuniga, R. and Morrison, D. (2000) Environmental and Economic Costs of Nonindigenous Species in the United States. BioScience, 50: 53–65.CrossRefGoogle Scholar
  53. Piper, C.V. (1906) Flora of the state of Washington. Contributions from the United States National Herbarium, 11: 282–283.Google Scholar
  54. Piper, C.V. (1922) The identification of Berberis aquifolium and Berberis repens. Contributions from the United States National Herbarium, 20: 437–451.Google Scholar
  55. Prati, D., and Bossdorf, O. (2004) A comparison of native and introduced populations of the South African Ragwort Senecio inaequidens DC. in the field. In: Results of the worldwide ecological studies (S.W. Breckle, B. Schweizer and A. Fangmeier, eds), pp. 353–359 Stuttgart: Verlag Günter Heimbach.Google Scholar
  56. Preston, C.D., Telfer, M.G., Arnold, H.R., Carey, P.D., Cooper, J.M., Dines, T.D., Hill, M.O., Pearman, D.A., Roy, D.B. and Smart, S.M. (2002) The changing flora of the UK, London: DEFRA: Oxford University Press.Google Scholar
  57. Pysek, P. (1990) On the terminology used in plant invasion studies. In: Plant Invasions — General Aspects and Special Problems (P. Pysek, K. Prach, M. Rejmanek and M. Wade, eds), pp. 71–81 Amsterdam: SPB Academic Publ.Google Scholar
  58. Queller, D.C., Strassmann, J.E. and Hughes, C.R. (1993) Microsatellites and kinship. Trends in Ecology & Evolution, 8: 285–288.Google Scholar
  59. Reinhardt, F, Herle, M., Abbott, Richard J., Bastiansen, F, and Streit, B. (2003) Economic impact of the spread of alien species in Germany, Berlin (Germany): Umwelbundesamt.Google Scholar
  60. Rejmanek, M. (2000) Invasive plants: approaches and predictions. Austral Ecology, 25: 497–506.Google Scholar
  61. Rejmanek, M. (1996) A theory of seed plant invasiveness: The first sketch. Biological Conservation, 78: 171–181.CrossRefGoogle Scholar
  62. Richards, C.L., Bossdorf, O., Muth, N.Z., Gurevitch, J. and Pigliucci, M. (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9: 981–993.CrossRefGoogle Scholar
  63. Richardson, D.M., Pysek, P., Rejmanek, M., Barbour, M.G., Panetta, F.D. and West, C.J. (2000) Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 93–107.Google Scholar
  64. Sakai, A.K., Allendorf, F.W., Holt, J.S., Lodge, D.M., Molofsky, J., With, K.A., Baughman, S., Cabin, R.J., Cohen, J.E., Ellstrand, N.C., McCauley, D.E., O’Neil, P., Parker, I.M., Thompson, J.N. and Weller, S.G. (2001) The population biology of invasive species. Annual Review of Ecology and Systematics, 32: 305–332.CrossRefGoogle Scholar
  65. Schlichting, C.D. (1986) The evolution of phenotypic plasticity in plants. Annual Review of Ecology and Systematics, 17: 667–693.CrossRefGoogle Scholar
  66. Soldaat, L.L., and Auge, H. (1998) Interactions between an invasive plant, Mahonia aquifolium, and a native phytophagous insect, Rhagoletis meigenii. In: Plant Invasions: Ecological mechanisms and human responses (U. Starfinger, K. Edwards, I. Kowarik and M. Williamson, eds), pp. 347–360 Leiden: Backhuys Publishers.Google Scholar
  67. Sperry, L.J., Belnap, J. and Evans, R.D. (2006) Bromus tectorum invasion alters nitrogen dynamics in an undisturbed arid grassland ecosystem. Ecology, 87: 603–615.CrossRefGoogle Scholar
  68. Sultan, S.E., Wilczek, A.M., Hann, S.D. and Brosi, B.J. (1998) Contrasting ecological breadth of co-occuring annual Polygonum species. Journal of Ecology, 86: 363–383.CrossRefGoogle Scholar
  69. van de Laar, H.J. (1975) Mahonia en Mahoberberis. Dendroflora, 11/12: 19–33.Google Scholar
  70. Weber, E. and Schmid, B. (1998) Latitudinal population differentiation in two species of Solidago (Asteraceae) introduced into Europe. American Journal of Botany, 85 1110–1121.CrossRefGoogle Scholar
  71. Whittemore, A.T. (1997) Berberis. In: Flora of North America pp. 276–286 New York, Oxford: Oxford University Press.Google Scholar
  72. Williamson, M. (1996) Biological invasion, London: Chapman & Hall.Google Scholar
  73. Williamson, M. and Fitter, A. (1996) The varying success of invaders. Ecology, 77 1661–1666.CrossRefGoogle Scholar
  74. Willis, A.J. and Blossey, B. (1999) Benign environments do not explain the increased vigour of non-indigenous plants: a cross-continental transplant experiment. Biocontrol Science and Technology, 9: 567–577.CrossRefGoogle Scholar
  75. Zeitlhöfler, Andreas (2002) Mahonia aquifolium — Die Gemeine Mahonie. http://www.garteninfos.de/wildobst/Dipl4-11.html.

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH, Wiesbaden 2009

Personalised recommendations