Skip to main content
  • 725 Accesses

This chapter is concerned with the solution technique of the elasticity PDE (1.7). Its weak formulation (1.11) constitutes a starting point for the development of a finite element method via the Galerkin method (cf. [Bra03]). One could principally employ the standard finite element method which is described for instance in Braess [Bra03]. However, we aim to solve shape optimization problems using a steepest descent method. In particular, this implies that our optimization variable — which means more precisely in our context the underlying domain the PDE (1.7) needs to be solved on — varies from iteration to iteration. Evidently, this might lead to rather complicated structures in the course of optimization, and would require various grids that frequently adapt to the new shape. Roughly speaking, the more complicated the shapes get, the more triangles we need to resolve the boundary, leading to a high number of degrees of freedom — which is linked directly to the size of the system of linear equations that needs to be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Vieweg+Teubner | GWV Fachverlage GmbH

About this chapter

Cite this chapter

Held, H. (2009). Solution of the Elasticity PDE. In: Shape Optimization under Uncertainty from a Stochastic Programming Point of View. Vieweg+Teubner. https://doi.org/10.1007/978-3-8348-9396-3_2

Download citation

Publish with us

Policies and ethics