Skip to main content

Hydroformylierung von Olefinen und Fischer-Tropsch-Synthese

  • Chapter
  • 4966 Accesses

Zusammenfassung

Im Zusammenhang mit Untersuchungen, unter den Bedingungen der Fischer-Tropsch-Synthese (Synthese von Kohlenwasserstoffen aus CO/H2) sauerstoffhaltige Verbindungen als Hauptprodukte zu erhalten, wurde 1938 von Otto Roelen bei der Ruhrchemie die Umsetzung von Ethen mit Synthesegas (CO/H2) zu Propionaldehyd in Gegenwart eines heterogenen Cobalt–Thorium-Katalysators entdeckt und bis zur technischen Reife entwickelt. Beim Einsatz terminaler Olefine als Substrat werden entweder n-Aldehyde oder – die zumeist unerwünschten – Isoaldehyde gebildet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 4

  • V. I. Bakhmutov, Eur. J. Inorg. Chem. 2005, 245: „Proton Transfer to Hydride Ligands with Formation of Dihydrogen Complexes: A Physicochemical View“

    Google Scholar 

  • H.-U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth. Catal. 2003 , 345, 103: „Selective Hydrogenation for Fine Chemicals: Recent Trends and New Developments“

    Article  CAS  Google Scholar 

  • A. Börner, Eur. J. Inorg. Chem. 2001, 327: „The Effect of Internal Hydroxy Groups in Chiral Diphosphane Rhodium(I) Catalysts on the Asymmetric Hydrogenation of Functionalized Olefins“

    Google Scholar 

  • J. M. Brown, R. Giernoth, Curr. Opin. Drug Discovery Dev. 2000, 3, 825: „New Mechanistic Aspects of the Asymmetric Homogeneous Hydrogenation of Alkenes“

    CAS  Google Scholar 

  • R. H. Crabtree, D. G. Hamilton, Adv. Organomet. Chem. 1988, 28, 299: „H–H, C–H, and Related Sigma- Bonded Groups as Ligands“

    Article  CAS  Google Scholar 

  • X. Cui, K. Burgess, Chem. Rev. 2005, 105, 3272: „Catalytic Homogeneous Asymmetric Hydrogenations of Largely Unfunctionalized Alkenes“

    Article  CAS  Google Scholar 

  • C. Daniel, N. Koga, J. Han, X. Y. Fu, K. Morokuma, J. Am. Chem. Soc. 1988, 110, 3773: „Ab Initio MO Study of the Full Catalytic Cycle of Olefin Hydrogenation by the Wilkinson Catalyst RhCl(PR3)3

    Article  CAS  Google Scholar 

  • H.-J. Drexler, W. Baumann, T. Schmidt, S. Zhang, A. Sun, A. Spannenberg, C. Fischer, H. Buschmann, D. Heller, Angew. Chem. 2005, 117, 1208: „Werden β-Acylaminoacrylate in gleicher Weise wie α-Acylaminoacrylate hydriert?“

    Article  Google Scholar 

  • L. Eberhardt, D. Armspach, J. Harrowfield, D. Matt, Chem. Soc. Rev. 2008, 37, 839: „BINOL-Derived Phosphoramidites in Asymmetric Hydrogenation: Can the Presence of a Functionality in the Amino Group Influence the Catalytic Outcome?“

    Article  CAS  Google Scholar 

  • S. Feldgus, C. R. Landis. J. Am. Chem. Soc. 2000, 122. 12714: „Large-Scale Computational Modeling of [Rh(DuPHOS)]+-Catalyzed Hydrogenation of Prochiral Enamides: Reaction Pathways and the Origin of Enantioselection“

    Article  CAS  Google Scholar 

  • J. Halpern, Inorg. Chim. Acta 1981, 50, 11: „Mechanistic Aspects of Homogeneous Catalytic Hydrogenation and Related Processes“

    Article  CAS  Google Scholar 

  • D. M. Heinekey, W. J. Oldham, Jr., Chem. Rev. 1993, 93, 913: „Coordination Chemistry of Dihydrogen“

    Article  CAS  Google Scholar 

  • R. Hofer, Chimia 2005, 59, 10: „In Kaisten, Syngenta Operates the World's Largest Plant in which an Enantioselective Catalytic Hydrogenation is Performed. How Did This Come About?“

    Article  CAS  Google Scholar 

  • C. Jäkel, R. Paciello, Chem. Rev. 2006, 106, 2912: „High-Throughput and Parallel Screening Methods in Asymmetric Hydrogenation“

    Article  Google Scholar 

  • B. R. James, Adv. Organomet. Chem. 1979, 17, 319: „Hydrogenation Reactions Catalyzed by Transition Metal Complexes“

    Article  CAS  Google Scholar 

  • A. L. Kenward, W. E. Piers, Angew. Chem. 2008, 120, 38: „Heterolytische H2-Aktivierung durch Nichtmetalle“

    Article  Google Scholar 

  • W. S. Knowles, Angew. Chem. 2002, 114, 2096: „Asymmetrische Hydrierungen“ (Nobel-Vortrag)

    Google Scholar 

  • N. Koga, K. Morokuma, ACS Symposium Ser. 1989, 394, 77: „Potential Energy Surface of Olefin Hydrogenation by Wilkinson Catalyst“

    Article  CAS  Google Scholar 

  • I. V. Komarov, A. Börner, Angew. Chem. 2001, 113, 1237: „Hochenantioselektiv oder nicht? – Chirale einzähnige Monophosphorliganden in der asymmetrischen Hydrierung“

    Article  Google Scholar 

  • M. J. Krische, Y. Sun (eds.), Acc. Chem. Res. 2007, 40 (12), 1237: Special Issue on Hydrogenation and Transfer Hydrogenation

    Article  CAS  Google Scholar 

  • G. J. Kubas, Adv. Inorg. Chem. 2004, 56, 127: „Heterolytic Splitting of H–H, Si–H, and other σ Bonds on Electrophilic Metal Centers“

    Article  CAS  Google Scholar 

  • B. McCulloch, J. Halpern, M. R. Thompson, C. R. Landis, Organometallics 1990, 9, 1392: „Catalyst– Substrate Adducts in Asymmetric Catalytic Hydrogenation. Crystal and Molecular Structure of [((R,R)- 1,2-Bis{phenyl-o-anisoylphosphino}ethane)(methyl (Z)-β-propyl-α-acetamidoacrylate)]rhodium Tetrafluoroborate, [Rh(DIPAMP)(MPAA)]BF4

    Article  CAS  Google Scholar 

  • R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97: „Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes“

    Article  CAS  Google Scholar 

  • R. Noyori, T. Ohkuma, Angew. Chem. 2001, 113, 40: „Asymmetrische Katalyse mit hinsichtlich Struktur und Funktion gezielt entworfenen Molekülen: die chemo- und stereoselektive Hydrierung von Ketonen“

    Article  Google Scholar 

  • R. Noyori, M. Yamakawa, S. Hashiguchi, J. Org. Chem. 2001, 66, 7931: „Metal–Ligand Bifunctional Catalysis: A Nonclassical Mechanism for Asymmetric Hydrogen Transfer between Alcohols and Carbonyl Compounds“

    Article  CAS  Google Scholar 

  • R. Noyori, Angew. Chem. 2002, 114, 2108: „Asymmetrische Katalyse: Kenntnisstand und Perspektiven“ (Nobel-Vortrag)

    Google Scholar 

  • T. Ohta, H. Takaya, M. Kitamura, K. Nagai, R. Noyori, J. Org. Chem. 1987, 52, 3176: „Asymmetric Hydrogenation of Unsaturated Carboxylic Acids Catalyzed by BINAP-Ruthenium(II) Complexes“

    Article  Google Scholar 

  • M. Peruzzini, R. Poli (eds.), Recent Advances in Hydride Chemistry, Elsevier, Amsterdam 2001

    Google Scholar 

  • A. Pfaltz, J. Blankenstein, R. Hilgraf, E. Hörmann, S. McIntyre, F. Menges, M. Schönleber, S. P. Smidt, B. Wüstenberg, N. Zimmermann, Adv. Synth. Catal. 2003, 345, 33: „Iridium-Catalyzed Enantioselective Hydrogenation of Olefins“

    Article  CAS  Google Scholar 

  • T. B. Rauchfuss, Inorg. Chem. 2004, 43, 14: „Research on Soluble Metal Sulfides: From Polysulfido Complexes to Functional Models for Hydrogenases“

    Article  CAS  Google Scholar 

  • M. T. Reetz, Angew. Chem. 2008, 120, 2592: „Kombinatorische Übergangsmetallkatalyse: Mischungen einzähniger Liganden zur Kontrolle der Enantio-, Diastereo- und Regioselektivität“

    Article  Google Scholar 

  • R. A. Sánchez-Delgado, M. Rosales, Coord. Chem. Rev. 2000, 196, 249: „Kinetic Studies as a Tool for the Elucidation of the Mechanisms of Metal Complex-Catalyzed Homogeneous Hydrogenation Reactions“

    Article  Google Scholar 

  • T. Satyanarayana, S. Abraham, H. B. Kagan, Angew. Chem. 2009, 121, 464: „Nichtlineare Effekte in der asymmetrischen Katalyse“

    Article  Google Scholar 

  • M. Schlaf, A. J. Lough, P. A. Maltby, R. H. Morris, Organometallics 1996, 15, 2270: „Synthesis, Structure, and Properties of the Stable and Highly Acidic Dihydrogen Complex trans-[Os(η2-H2)(CH3CN)- (dppe)2](BF4)2. Perspectives on the Influence of the trans Ligand on the Chemistry of the Dihydrogen Ligand“

    Article  CAS  Google Scholar 

  • J. G. de Vries, C. J. Elsevier (eds.), The Handbook of Homogeneous Hydrogenation, Vol. 1–3, Wiley- VCH, Weinheim 2007

    Google Scholar 

  • G. Zassinovic, G. Mestroni, S. Gladiali, Chem. Rev. 1992, 92, 1051: „Asymmetric Hydrogen Transfer Reactions Promoted by Homogeneous Transition Metal Catalysts“

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Vieweg+Teubner | GWV Fachverlage GmbH

About this chapter

Cite this chapter

Steinborn, D. (2010). Hydroformylierung von Olefinen und Fischer-Tropsch-Synthese. In: Grundlagen der metallorganischen Komplexkatalyse. Vieweg+Teubner. https://doi.org/10.1007/978-3-8348-9375-8_5

Download citation

Publish with us

Policies and ethics