Skip to main content
  • 1986 Accesses

Abstract

Since the solution of the 2-dimensional (planar) Ising problem was achieved by Onsager, the physicists have been trying to reproduce his solution by more understandable methods. In the fifties and in the beginning of sixties two discrete methods appeared: the Pfaffian method of Kasteleyn and independently Fisher, Temperley, and the path method of Kac, Ward, Potts, Feynman and Sherman. Both methods start by reducing the Ising partition function Z(G, β) to the generating function ε(G, x) of even subsets of edges. This is accomplished by van der Waerden's theorem (Theorem 6.3.1). The Pfaffian method seems to be better known to discrete mathematicians. It further reduces ε(G, x) to the generating function P(G′, x) of the perfect matchings (dimer arrangements) of a graph G′ obtained from G by a local operation at each vertex (see Section 6.2). It is important that these operations are locally planar, i.e., G′ may be embedded on the same surface as G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Vieweg+Teubner | GWV Fachverlage GmbH

About this chapter

Cite this chapter

Loebl, M. (2010). 2D Ising and dimer models. In: Discrete Mathematics in Statistical Physics. Vieweg+Teubner. https://doi.org/10.1007/978-3-8348-9329-1_9

Download citation

Publish with us

Policies and ethics