Skip to main content
  • 6241 Accesses

Auszug

Ein Mikrosystem ist eine komplexe Einheit von verschiedenen miniaturisierten Komponenten, deren typische Strukturgrößen im Mikrometer- und/oder Nanometerbereich liegen. Bild 4.1-1 zeigt schematisch den Aufbau von Mikrosystemen und versucht, die verwendeten Begriffe zu systematisieren. Komponenten eines Mikrosystems werden meist hinsichtlich ihrer Funktion identifiziert und stellen unter diesem Gesichtspunkt ein eigenständiges Gebilde (Subsystem) dar (z. B. Sensor, Aktor, mikroelektronischer Schaltkreis, Datenspeicher). Man kann sie auch hinsichtlich ihrer primären Funktionalität klassifizieren, z. B. als mikromechanische, mikrooptische, mikrofluidische Komponente.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. W. Anacker, E. Bassous, F. F. Fang, R. E. Mundie, H. N. Yu, Fabrication of Multiprobe Miniature Electrical Connector, IBM Techn. Bull. 19 (1976) 372–374

    Google Scholar 

  2. P. Arquint, P. D. van der Wal, B. H. van der Schoot, N. F. de Rooij, Flexible Po1ysiloxane Interconnection between Two Substrates for Microsystem Assembly, 8th Internat. Conf. on Solid-State Sensors and Actuators (Transducers’ 95), Stockholm, (1995), 263–264

    Google Scholar 

  3. H. Baltes, D. Moser, F. Völklein, Thermoelectric microsensors and microsystems, in Bau, de Rooij, Zemel (Eds.) Sensors, V01. 7, VCH-Verlag Weinheim, (1993)

    Google Scholar 

  4. H. Baltes, O. Brand, CMOS-based microsensors and packaging, Sensors and Actuators A 92 (2001) 1–9

    Article  Google Scholar 

  5. P. W. Barth, Silicon Fusion Bonding for Fabrication of Sensors, Actuators and Microstruktures, Sensors and Actuators A 23 (1990) 919–926

    Article  Google Scholar 

  6. H. Becker, C. Gärtner, Polymer Microfabrication Methods for Microfluidic Analytical Applications, Electrophoresis 21 (2000) 12–26

    Article  Google Scholar 

  7. C. den Besten, R. E. G. van Hal, J. Munoz, P. Bergveld, Polymer Bonding of Micromachined Silicon Structures, Proc. IEEE Micro Electro Mechanical Systems (MEMS’ 92), Travem-Unde, (1992), 104–109

    Google Scholar 

  8. J. K. Bhardwaj, H. Ashraf, Advanced Silicon Etching Using High Density Plasma, Micromachining and Microfabrication Process Technology (Proc. of the SPIE), Austin, Texas, (1995), 224–233

    Google Scholar 

  9. R. W. Bower, M. S. Ismail, B. E. Roberds, Low Temperature Si3N4 Direct Bonding, Appl. Phys. Lett. 62 (1993) 3485–3497

    Article  Google Scholar 

  10. O. Brand, Micromechanical Resonators for Ultrasound Based Proximity Sensing, Ph. D. Thesis, ETH Zurich (1994), Diss. ETH No. 10896

    Google Scholar 

  11. K.-H. Brenner, Development of modules for micro optical integration and MOEMS packaging, MOEMS and Miniaturized Systems, M.E. Motamedi, R. Goring (Eds.), Proc. of SPIE 4178 (2000) 138–140

    Google Scholar 

  12. J. T. Butler, V. M. Bright, J. H. Comtois, Multichip module packaging of microelectromechanical systems, Sensors and Actuators A 70 (1998) 15–22

    Article  Google Scholar 

  13. M. Chiao, L. Lin, Accelerated hermeticity testing of a glass-silicon package formed by rapid thermal processing aluminum-to-silicon nitride bonding, Sensors and Actuators A 97-98 (2002) 405–409

    Article  Google Scholar 

  14. Y.-H. Cho, B. M. Kwak, A. P. Pisano, R. T. Howe, Viscous Energy Dissipation in Laterally Oscillating Planar Microstructures, Proc. IEEE Micro Electro Mechanical Systems (MEMS’ 93), Ft. Lauderdale, (1993), 93–98

    Google Scholar 

  15. E. M. Chow, A. Partridge, C. F. Quate, T. W. Kenny, Through-Wafer Electrical Interconnects Compatible with Standard Semiconductor Processing, Solid-State Sensor and Actuator Workshop, Hilton Head Island, S.C., (2000), 343–346

    Google Scholar 

  16. M. B. Cohn, Y. Liang, R. T. Howe, A. P. Pisano, Wafer-to-Wafer Transfer of Microstructures for Vacuum Packaging, Techn. Digest: 1996 Solid State Sensor and Actuator Workshop, Hilton Head Island, S.C., (1996), 32–35

    Google Scholar 

  17. T. A. Core, W. K. Tsang, S. J. Sherman, Solid State Technology 36 (1993) 39

    Google Scholar 

  18. Sealing Glass, Corning Technical Publication, Corning Glass Works

    Google Scholar 

  19. C. Cotofana, A. Bossche, P. Kaldenberg, J. Mollinger, Low-cost plastic sensor packaging using the openwindow package concept, Sensors and Actuators A 67 (1998) 185–190

    Article  Google Scholar 

  20. D. Craven, K. Yu, T. Pandhumsoporn, Etching Technology for „Through-the-Wafer“ Silicon Etching, Micromachining and Microfabrication Process Technology (Proc. of the SPIE), Austin, Texas, (1995), 259–263

    Google Scholar 

  21. W. Daum, W. Burdick Jr., R. Fillion, Overlay high-density interconnect: a chips-first multichip module technology, IEEE Comput. 26 (1993) 23–29

    Google Scholar 

  22. Jour. Micromech. Microeng. 6 (1996) 187–192

    Google Scholar 

  23. H. Ehlers, M. Biletzke, B. Kuhlow, G. Przyrembel, U. H. P. Fischer, Optoelectronic Packaging of Arrayed-Waveguide Grating Modules and Their Environmental Stability Tests, Optical Fiber Technology 6 (2000) 344–356

    Article  Google Scholar 

  24. L. A. Field, R. Müller, Fusing Silicon Wafers with Low Melting Temperature Glasses, Sensors and Actuators A 23 (1990) 935–938

    Article  Google Scholar 

  25. M. Fischer, M. Nägele, D. Eichner, C. Schöllhorn, R. Strobel, Transducers’ 95, Stockholm, Sweden, (1995) 305

    Google Scholar 

  26. C. Gärtner, V. Bliimel, B. Höfer, A. Kräplin, T. Poßner, P. Schreiber, Assembly process for micro-optical beam transformation systems for high power diode laser bars and stacks, MOEMS and Miniaturized Systems, M. E. Motamedi, R. Göring (Eds.), Proc. of SPIE 4178 (2000) 149–155

    Google Scholar 

  27. S. Gentzsch, Untersuchungen zur Herstellung und Anwendung von Opferschichten für die mikrogalvanische Abscheidung, Diplomarbeit, FH Wiesbaden (1996)

    Google Scholar 

  28. G. Gerlach, M. Tierock, Fertigung elektronischer und mikromechanischer Baugruppen, in W. Krause (Hrsg.) Fertigung in der Feinwerk-und Mikrotechnik, Kap. 10, Carl Hanser, München, (1996)

    Google Scholar 

  29. Y. G. Gianchandani, K. J. Maana, K. Najafi, Transducers’ 95, Stockholm, Sweden, (1995) 79

    Google Scholar 

  30. H. Guckel, D. W. Burns, Planar Processed Polysilicon Sealed Cavities for Pressure Transducer Arrays, Techn. Digest: IEEE Internat. Electron Devices Meeting (IEDM’ 84), San Francisco, (1984), 223–225

    Google Scholar 

  31. H. Guckel, D. W. Burns, A Technology for Integrated Transducers, Internat. Conf. on Solid-State Sensors and Actuators, Philadelphia, (1985), 90–92

    Google Scholar 

  32. H. Guckel, D. W. Burns, Fabrication Techniques for Integrated Sensor Microstructures, IEEE International’ 86, Los Angeles, (1986), 176–179

    Google Scholar 

  33. H. Guckel, D. W. Burns, C. K. Nesler, C. R. Rutigliano, Fine Grained Polysilicon and its Application to Planar Pressure Transducers, 4th Internat. Conf. on Solid-State Sensors and Actuators (Transducers’ 87), Tokyo, (1987), 277–282

    Google Scholar 

  34. L. Guerin, M. A. Schaer, R. Sachot, M. Dutoit, New multichip-on-silicon packaging scheme for microsystems, Sensors and Actuators A 52 (1996) 156–160

    Article  Google Scholar 

  35. A. Häberli, Compensation and Calibration of IC Microsensors, Ph. D. Thesis, ETH Zürich, (1997), Diss. ETH No. 12090

    Google Scholar 

  36. F. Henschke, Miniaturgreifer und montagegerechtes Konstruieren in der Mikromechanik, Ansätze zur Lösung des Montageproblems in der Mikrosystemtechnik, VDI-Berichte 242, VDI-Verlag Düsseldorf (1994)

    Google Scholar 

  37. A. W. van Herwaarden, P. M. Sarro, Sensors and Actuators 10 (1986) 321

    Article  Google Scholar 

  38. U. Hilleringmann, Silizium-Halbleitertechnologie, Teubner, Stuttgart, (1996)

    Google Scholar 

  39. W. J. Howell, D. W. Brouillette, J. W. Korejwa, E. J. Sprogis, S. J. Yankee, Proc. 45th IEEE Electronic Components & Technology Conf. (1995) 1174

    Google Scholar 

  40. W. Huang, X. Cai, B. Xu, L. Luo, X. Li, Z. Cheng, Packaging effects on the performance of MEMS for high-G accelerometer with double-cantilevers, Sensors and Actuators A 102 (2003) 268–278

    Article  Google Scholar 

  41. W. Huang et al., Low temperature PECVD SiNx films applied in OLED packaging, Materials Science and Engineering B 98 (2003) 248–254

    Article  Google Scholar 

  42. K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, K. Harada, Three-Dimensional Micromachining of Silicon Pressure Sensor Integrating Resonant Strain Gauge on Diaphragm, Sensors and Actuators A 23 (1990) 1007–1010

    Article  Google Scholar 

  43. D. Jaeggi, H. Baltes, D. Moser, IEEE Electron Device Lett. 13 (1992) 366

    Article  Google Scholar 

  44. J. Janting, J. Branebjerg, P. Rombach, Conformai coatings for 3D multichip microsystem encapsulation

    Google Scholar 

  45. J. R. Jensen, Microelectronics Processing, ASC, Washington, (1989) 441–504

    Google Scholar 

  46. Y. Jin et al., Zr/V/Fe thick film for vacuum packaging of MEMS, Jour. Micromech. Microeng. 14 (2004) 687–692

    Article  Google Scholar 

  47. V. T. Jordanov, J. R. Macri, J. E. Clayton, K. A. Larson, Multi-electrode CZT detector packaging using polymer flip chip bonding, Nuclear Instrum. and Methods in Physics Research A 458 (2001) 511–517

    Article  Google Scholar 

  48. G. Kelly, J. Alderman, C. Lyden, J. Barrett, Microsystem packaging: lessons from conventional low cost IC packaging, Jour. Micromech. Microeng. 7 (1997) 99–103

    Article  Google Scholar 

  49. W. H. Ko, J. T. Suminto, G. J. Yeh, Bonding Techniques for Microsensors, in Micromachining and Micropackaging of Transducers, C. D. Fung, P. W. Cheung, W. H. Ko, D. G. Fleming (Eds.), Elsevier, Amsterdam, (1985), 41–61

    Google Scholar 

  50. H. Krassow, F. Campabadal, E. Lora-Tamayo, Wafer level packaging of silicon pressure sensors, Sensors and Actuators 82 (2000) 229–233

    Article  Google Scholar 

  51. J. B. Lasky, Appl. Phys. Lett. 48 (1986) 78

    Article  Google Scholar 

  52. C. Lee, W.-F. Huang, J.-S. Shie, Wafer bonding by low-temperature Soldering, Sensors and Actuators A 85 (2000) 330–334

    Article  Google Scholar 

  53. D.-J. Lee, Y.-H. Lee, J. Jang, B.-K. Ju, Glass-to-glass electrostatic bonding with intermediate amorphous silicon film for vacuum packaging of microelectronics and its application, Sensors and Actuators A 89 (2001) 43–48

    Article  Google Scholar 

  54. B. Lee, S. Seok, K. Chun, Jour. Micromech. Microeng. 13 (2003) 663–669

    Article  Google Scholar 

  55. R. Lenggenhager, H. Baltes, J. Peer, M. Forster, IEEE Electron Device Lett. 13 (1992) 454

    Article  Google Scholar 

  56. R. Lenggenhager, CMOS Thermoelectric Infrared Sensors, Ph. D. Thesis ETH Zurich (1994), Diss. ETH No. 10744

    Google Scholar 

  57. S. Linder, H. Baltes, F. Gnaedinger, E. Doering, Fabrication Technology for Wafer Through-hole Interconnections and Three-Dimensional Stacks of Chips and Wafers, Proc. IEEE Micro Electro Mechanical Systems (MEMS’94), Oiso, Japan, (1994), 349–354

    Google Scholar 

  58. S. Linder, Chip Stacks for Memory Applications, Ph. D. Thesis, ETH Zürich, (1996), Diss. ETH No. 11347

    Google Scholar 

  59. D. J. Lischner, H. Basseches, F. A. D’ Altroy, Observations of the Temperature Gradient Zone Melting Process for ISolating Small Devices, Jour. Electrochem. Soc. 132 (1985) 2991–2996

    Google Scholar 

  60. A. P. London, A. A. Ayon, A. H. Epstein, S. M. Spearing, T. Harrison, Y. Peles, J. L. Kerrebrock, Sensors and Actuators A 92 (2001) 351

    Article  Google Scholar 

  61. E. Luder, Bau hybrider Mikroschaltungen, Springer, Berlin, (1977)

    Google Scholar 

  62. W. Ma, Y. Zohar, M. Wong, Design and characterization of inertia-activated electrical micro-switches fabricated and packaged using low-temperature photoresist molded metal-electroplating technology, Jour. Micromech. Microeng. 13 (2003) 892–899

    Article  Google Scholar 

  63. W. Ma, G. Li, Y. Zohar, M. Wong, Fabrication and packaging of inertia micro-switch using lowtemperature photo-resist molded metal-electroplating technology, Sensors and Actuators A 111 (2004) 63–70

    Article  Google Scholar 

  64. P. Malcovati, A. Häberli, D. Jaeggi, F. Maloberti, H. Baltes, Transducers’ 95, Stockholm, Sweden, (1995) 119

    Google Scholar 

  65. CMOS Thermoelectric Sensor Interfaces, Ph. D. Thesis, ETH Zürich, (1996), Diss. ETH No. 11424

    Google Scholar 

  66. C. Massit, G. Nicolas, Proc. 45th IEEE Electronic Components & Technology Conf. (1995) 641

    Google Scholar 

  67. M. Mehregany, S. F. Bart, L. S. Tavorow, J. H. Lang, S. D. Senturia, M. F. Schlecht, Sensors and Actuators A 21-23 (1990) 173

    Article  Google Scholar 

  68. W. Menz, J. Mohr, Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, (1997)

    Google Scholar 

  69. E. Meusel, Mikrosystemtechnik-eine Herausforderung für die Aufbau-und Verbindungstechnik, GEM-Fachbericht 11 (1993) 337

    Google Scholar 

  70. J. A. Minahan, A. Pepe, R. Some, M. Suer, Proc. 42nd IEEE Electronic Components & Technology Conf. (1992) 340

    Google Scholar 

  71. K. Minami, T. Moriuchi, M. Esashi, Cavity Pressure Control for Critical Damping of Packaged Micro Mechanical Devices, 8th Internat. Conf. on Solid-State Sensors and Actuators (Transducers’ 95), Stockholm, (1995), 240–243

    Google Scholar 

  72. H. Morishita, Y. Hatamura, Development of ultraprecise manipulator system for future nanotechnology, in R. Dillmann, E. holler (Hrsg.), Proc. 1st IARP Workshop on Micro Robotics and Systems, Karlsruhe, (1993)

    Google Scholar 

  73. A. Morrissey, G. Kelly, J. Alderman, Low-stress 3D packaging of a microsystem, Sensors and Actuators A 68 (1998) 404–409

    Article  Google Scholar 

  74. A. Morrissey, G. Kelly, J. Alderman, Selection of materials for reduced stress packaging of a microsystem, Sensors and Actuators 74 (1999) 178–181

    Article  Google Scholar 

  75. D. Moser, R. Lenggenhager, G. Wachutka, H. Baltes, Sensors and Actuators B 6 (1992) 165

    Article  Google Scholar 

  76. D. Moser, CMOS Flow Sensors, Ph. D. Thesis, ETH Zürich, (1993), Diss. ETH No. 10059

    Google Scholar 

  77. M. Müllenborn, P. Rombach, U. Klein, K. Rasmussen, J. F. Kuhmann, M. Heschel, M. Amskov Gravad, J. Janting, J. Branebjerg, A. C. Hoogerwerf, S. Bouwstra, Chip-size-packaged silicon microphones, Sensors and Actuators A 92 (2001) 23–29

    Article  Google Scholar 

  78. W. von MUnch, Einführung in die Halbleitertechnologie, Teubner, Stuttgart, (1993)

    Google Scholar 

  79. J. Munoz, A. Bratov, R. Mas, N. Abramova, C. Dominguez, J. Bartroli, Packaging of ISFETs at the Wafer Level by Photopatternable Encapsulant Resins, 8th Internat. Conf. on Solid-State Sensors and Actuators (Transducers’ 95), Stockholm, (1995), 248–251

    Google Scholar 

  80. H. Nakanishi et al., Proc. 45th IEEE Electronic Components & Technology Conf. (1995) 634

    Google Scholar 

  81. M. Offenberg, F. Lärmer, B. Elstner, H. MUnzel, W. RiethmUller, Transducers’ 95, Stockholm, Sweden, (1995) 589

    Google Scholar 

  82. H. Ohashi, J. Ohura, T. Tsukakoshi, M. Shimbo, Improved Dielectrically ISolated Device Integration by Silicon-Wafer Direct Bonding Technique, Techn. Digest:IEEE Internat. Electron Devices Meeting (IEDM’ 86), Los Angeles, (1986), 211–213

    Google Scholar 

  83. C. T. Pan, H. Yang, S.-C. Shen, M.-C. Chou, H.-P. Chou, A low-temperature wafer bonding technique using patternable materials, Jour. Micromech. Microeng. 12 (2002) 611–615

    Article  Google Scholar 

  84. C. T. Pan, Selective low temperature microcap packaging technique through flip chip and wafer level alignment, Jour. Micromech. Microeng. 14 (2004) 522–529

    Article  Google Scholar 

  85. O. Paul, H. Baltes, Sensors and Materials, 6 (1994) 245

    Google Scholar 

  86. A. Plößl, G. Kräuter, Wafer direct bonding: tailoring adhesion between brittle materials, Mat. Science Eng. R 25 (1999) 1

    Article  Google Scholar 

  87. Epoxy-Klebstoffe für die Hybridtechnik, Polytec GmbH Waldbronn, Produktinformation

    Google Scholar 

  88. M. W. Putty, S. Chang, R. T. Howe, A. L. Robinson, K. D. Wise, Sensors and Actuators A 20 (1989) 143

    Article  Google Scholar 

  89. H. J. Quenzer, W. Benecke, Low-Temperature Silicon Wafer Bonding, Sensors and Actuators A 32 (1992) 340–344

    Article  Google Scholar 

  90. H. Reichl, Hybridintegration-Technologie und Entwurf von Dickschichtschaltungen, Hüthig, Heidelberg, (1986)

    Google Scholar 

  91. W. Riethmüller, W. Benecke, U. Schnakenberg, B. Wagner, Sensors and Actuators A 31–32 (1991) 121

    Google Scholar 

  92. S. Rimdu, H. Ishida, Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins, Polymer 41 (2000) 7941–7949

    Google Scholar 

  93. I. Rüge, Halbleiter-Technologie, Springer, Berlin (1984)

    Google Scholar 

  94. H. Scheel, Baugruppentechnologie der Elektronik, Verlag Technik, Berlin, (1997)

    Google Scholar 

  95. J. Schmidt, Int. Electronics Packaging Conf., Atlanta, USA, (1994)

    Google Scholar 

  96. M. A. Schmidt, Silicon Wafer Bonding for Micromechanical Devices, Techn. Digest: 1994 Solid-State Sensor and Actuator Workshop, Hilton Head Island, S.C., (1994), 127–130

    Google Scholar 

  97. U. Schnakenberg, W. Benecke, B. Lochel, Sensors and Actuators A 23 (1990) 1031

    Article  Google Scholar 

  98. H. Seidel, U. Fritzsch, R. Gottinger, J. Schalk, J. Walter, K. Ambaum, Transducers’ 95, Stockholm, Sweden, (1995) 597

    Google Scholar 

  99. N. Shiozawa, K. Isaka, T. Ohta, Int. Electronics Packaging Conf., Atlanta, USA, (1994)

    Google Scholar 

  100. M. Shimbo, K. Furukawa, K. Tanzawa, Silicon-to-Silicon Direct Bonding Method, Jour. Appl. Phys. 60 (1986) 2987–2989

    Article  Google Scholar 

  101. S. Shoji, H. Kikuchi, H. Torigoe, Sensors and Actuators A 64 (1998) 95–100

    Article  Google Scholar 

  102. G. Spangler, E. S. Kolesar, Meandering „string-like“ features observed in an anodic bond, Jour. Micromech. Microeng. 12 (2002) 541–547

    Article  Google Scholar 

  103. D. R. Sparks, L. Jordan, J. H. Frazee, Flexible vacuum-packaging method for resonating micromachines, Sensors and Actuators A 55 (1996) 179–183

    Article  Google Scholar 

  104. D. R. Sparks, G. Queen, R. Weston, G. Woodward, M. Putty, L. Jordan, S. Zarabadi, K. Jayakar, Jour. Micromech. Microeng. 11 (2001) 630–634

    Article  Google Scholar 

  105. SSI Technologies, Solid-State Integrated Pressure Sensor, SSI Technologies, Janesville, (1995)

    Google Scholar 

  106. R. Stengl et al., A modul for the silicon wafer bonding process, Jap. Jour. Appl. Phys. 28 (1989) 1735

    Article  Google Scholar 

  107. L. G. Sun, J. Zhan, Q. Y. Tong, S. J. Xie, Y. M. Caim, S. J. Lu, Cool Plasma Activated Surface in Silicon Wafer Direct Bonding Technology, Jour. Physique Ciolloq. C 49 (1988) 79–82

    Google Scholar 

  108. C. W. Tan, A. R. Daud, M. A. Yarmo, Corrosion study at Cu-Al interface in microelectronics packaging, Appl. Surface Science 191 (2002) 67–73

    Article  Google Scholar 

  109. Y. Tian, C. Wang, D. Liu, Thermomechanical behaviour of PBGA package during laser and hot air reflow Soldering, Modelling Simul. Mater. Sci. Eng. 12 (2004) 235–243

    Article  Google Scholar 

  110. Q.-Y. Tong, G. Cha, R. Gafiteanu, U. Gösele, Low Temperature Wafer Direct Bonding, Jour, of Micromechanical Systems 3 (1994) 29–35

    Article  Google Scholar 

  111. R. R. Tummala (Ed.), Fundamentals of Microsystem Packaging, Mc Graw Hill, New York, 2001

    Google Scholar 

  112. K. Uemura, S. Kanemaru, J. Itoh, Fabrication of a vacuum-sealed magnetic sensor with a Si field emitter tip, Jour. Micromech. Microeng. 11 (2001) 81–83

    Article  Google Scholar 

  113. G. Wallis, Field assisted glass sealing, Electrocomponent Science Techn. 2 (1975) 45

    Google Scholar 

  114. D. Widmann, H. Mader, H. Friedrich, Technologie hochintegrierter Schaltungen, Springer, Berlin, (1996)

    Google Scholar 

  115. G. Z. Xiao, Z. Zhang, C. P. Grover, Adhesives in the packaging of planar lightwave circuits, Intern. Jour. of Adhesion & Adhesives 24 (2004) 313–318

    Article  Google Scholar 

  116. A. Yamada, T. Kawasaki, M. Kawashima, SOI Wafer Bonding with Spin-on-Glass as Adhesive, Electronic Lett. 23 (1987) 39–40

    Article  Google Scholar 

  117. E. Yoon, K. D. Wise, IEEE Trans. Electron Devices ED-39 (1992) 1376

    Google Scholar 

Literatur

  1. Antao, B.; Brodersen, A.: Behavioral simulation for analog system design verification. IEEE Trans. VLSI 3 (1995)3, 417–429.

    Article  Google Scholar 

  2. Antoulas, A.; Sorensen, D.: Approximation of large-scale dynamical systems-An overview. Technical Report, Rice University, 2001. http://www-ece.rie.edu//acaAntns00.pdf

  3. Antao, B. (Ed.): Modeling and Simulation of Mixed Analog-Digital Systems. Dordrecht: Kluwer 1996.

    Google Scholar 

  4. Armstrong, J.R.: Chip-Level Modeling with VHDL. Prentice Hall, Englewood Cliffs 1989

    Google Scholar 

  5. Atherton, D.P.; Borne, P.: Concise Encyclopedia of Modelling and Simulation. Pergamon Press, Oxford 1992. Ein umfassender überblick zur wertkontinuierlichen Simulation: Lösung von Differentialgleichungen, z-Transformation, Identifikationsverfahren

    Google Scholar 

  6. Banks, J. (Ed.): Handbook of Simulation. Wiley, New York 1998. Ein umfassender überblick zur diskreten Simulation (Methoden und knappe Beschreibung von Simulatoren wie GPSS/H, SIMSCRIPT und SIMPLE++).

    Google Scholar 

  7. Breitenecker, F.; Ecker, H.; Bausch-Gall, I.: Simulieren mit ACSL. Vieweg, Braunschweig 1993

    MATH  Google Scholar 

  8. Bielefeld, J.: Simulation analoger elektromechanischer Mikrosysteme und des Verhaltens von elektrothermischen Bauelementen unter Verwendung eines automatisch generierten vereinheitlichten Modells. Dissertation, Uni-GH Duisburg 1996

    Google Scholar 

  9. Braess, D.: Finite Elemente. Springer, Berlin 1997.

    MATH  Google Scholar 

  10. Billep, D.: Modellierung und Simulation eines mikromechanischen Drehratensensors. Diss., TU Chemnitz 2000.

    Google Scholar 

  11. Breedveld, P.C.: Multi bondgraph elements in physical systems theory. J. Franklin Inst. 319 (1985), 1–36.

    Article  Google Scholar 

  12. Codecasa, L.; D’ Amore, D.; Maffezzoni, P.: An Arnoldi based thermal network reduction method for electro-thermal analysis. IEEE Trans. CPT 26(2003)1,186–192.

    Google Scholar 

  13. Codecasa, L.; D’ Amore, D.; Maffezzoni, P.: A novel approach for generating boundary condition independent compact dynamic thermal networks of packages. Proc. 10. Workshop on Thermal Investigation of ICs and Systems (THERMINIC), Sophia Antipolis 2004, 305–310.

    Google Scholar 

  14. Cellier, F. E.: Continuous System Modeling. Springer, New York/Berlin 1991.

    MATH  Google Scholar 

  15. Chandrupatla, T.R.; Belegundu, A.D.: Introduction to Finite Elements in Engineering (2nd Ed.). Prentice Hall, Upper Saddle River 1997.

    Google Scholar 

  16. Clauss, C; Gruschwitz, R.; Schwarz, P.; Wünsche, S.: Simulation mikrosystemtechnischer Aufgaben mit gekoppelten Simulatoren. 2. Chemnitzer Fachtagung „Mikrosystemtechnik-Mikromechanik & Mikroelektronik“, TU Chemnitz-Zwickau, 16./17.10.1995, 92–101.

    Google Scholar 

  17. Clauß, C; Haase, J; Schwarz, P.: VHDL-AMS: eine standardisierte Beschreibungssprache auch für die Mikrosystemtechnik. Tutorial, 8. GMM-Workshop “Methoden und Werkzeuge zum Entwurf von Mikrosystemen. Berlin, Dezember 1999

    Google Scholar 

  18. Chen, J.; Kang, S.M.; Zou, J.; Liu, C; Schutt-Ain, J.E.: Reduced order modeling of weakly nonlinear MEMS devices with Taylor-series expansions and Arn01di approach. Journal of Microelectromechanical Systems 13(2004)3,441–451.

    Article  Google Scholar 

  19. Connelly, J.A.; Choi, P.: Macromodeling with SPICE. Prentice Hall, New Jersey, 1992.

    Google Scholar 

  20. Clauß, C; Reitz, S.; Schwarz, P.: Simulation mechanisch-elektrischer Wechselwirkungen am Beispiel eines sensorischen Mikrosystems. Proc. SIM’2000, Dresden, Februar 2000,183–196

    Google Scholar 

  21. Digele, G.; Lindenkreuz, S.; Kasper, E.: Fully coupled dynamic electro-thermal simulation. IEEE Trans. VLSI 5(1997)3, 250–257.

    Article  Google Scholar 

  22. Eccardt, P.C. et al.: Coupled finite element and network simulation for microsystem components. MICRO SYSTEM Technologies’ 96, Potsdam, Sept. 1996, 145–150

    Google Scholar 

  23. Fischer, W.-J. (Hrg.): Mikrosystemtechnik. Vogel, Würzburg 2000.

    Google Scholar 

  24. Feng, L.; Rudnyi, E.B.; Korvink, J.G.: Boundary condition independent compact thermal models. Proc. 10. Workshop on Thermal Investigation of ICs and Systems (THERMINIC), Sophia Antipolis 2004, 281.

    Google Scholar 

  25. Gerlach, G.; Dötzel, W.: Grundlagen der Mikrosystemtechnik. Hanser, München 1997

    Google Scholar 

  26. Mehner, J.E.; Gabbay, L.D; Senturia, S.D.: Computer-aided generation of nonlinear reduced-order dynamic macromodels-1: Non-stress-stiffened case. Journal of Microelectromechanical Systems 9(2000)2,262–269.

    Article  Google Scholar 

  27. Guyan, R.J.: Reduction of stiff and mass matrices. AIAA Journal 3(1965)2, 380–383

    Article  Google Scholar 

  28. Hofmann, K.: Differential model generation for microsystem components using analog hardware description languages, Dissertation, TU Darmstadt, 1997.

    Google Scholar 

  29. Hofmann, K.; Glesner, M.: A library concept for parametrized microsystem components suitable for the creation of behavioral models from a structural (FEM) view. 2nd Workshop on Libraries, Component Modeling, and Quality Assurance, Toledo 1997, 233–244

    Google Scholar 

  30. Haase, J.; Reitz, S.; Schwarz, P.: Behavioral modeling for heterogeneous systems based on FEM descriptions. Proc. IEEE Intern. Workshop Behavioral Modeling and Simulation BMAS99, Orlando, FL, 1999.

    Google Scholar 

  31. Isermann, R.: Identifikation dynamischer Systeme. Springer, Berlin 1992

    Google Scholar 

  32. Jansen, D. (Edt): The Electronic Design Automation Handbook. Kluwer, Boston 2003.

    MATH  Google Scholar 

  33. Kaltenbach, M.: Numerical Simulation of Mechatronic Sensors and Actuators. Springer, Berlin 2004.

    Google Scholar 

  34. Kasper, M: Mikrosystementwurf. Springer, Berlin 2000.

    MATH  Google Scholar 

  35. Klein, A.: Modellierung und Simulation von Mikromembranpumpen. Dissertation, Dresden University Press, 2000

    Google Scholar 

  36. Klein, A.; Gerlach, G.: System modelling of microsystems containing mechanical bending plates using an advanced network description method. MICRO SYSTEM Technologies, VDI-Verlag, Berlin 1996, 299–304.

    Google Scholar 

  37. Karnopp, D. C; Margolis, D. L.; Rosenberg, R. C: System Dynamics: A Unified Approach. Wiley, New York 1990.

    Google Scholar 

  38. Koenig, H. E.; Blackwell, W. A.: Electromechanical System Theory. McGraw-Hill, New York 1961.

    MATH  Google Scholar 

  39. Lasance, C.J.M.: Recent progress in compact thermal models. Proc. 19. IEEE SEMI-THERM Symposium, San Jose 2003, 290–299

    Google Scholar 

  40. Lenk, A.: Elektromechanische Systeme (3 Bände). Verlag Technik, Berlin 1971.

    Google Scholar 

  41. Lerch, R.; Kaltenbacher, M.; Landes, H.; Lindinger, F.: Computergestutzte Entwicklung elektromechanischer Transducer, e&i 113(1996)7/8, 532–546. Siehe auch: http://www.lse.unierlangen.de/CAPA/index.htm

    Google Scholar 

  42. Lorenz, G.; Neul, R.: Network-type modeling of micromachined sensor systems. Proc. MSM98, 233–238

    Google Scholar 

  43. Lorenz, G.: Netzwerksimulation mikromechanischer Systeme. Dissertation Uni Bremen 1999

    Google Scholar 

  44. Lehmann, G.; Wunder, B.; Selz, M.: Schaltungsdesign mit VHDL. Franzis-Verlag, Poing, 1994.

    Google Scholar 

  45. Mantooth, H. A.; Fiegenbaum, M. F.: Modeling with an Analog Hardware Description Language. Kluwer, Dordrecht 1994.

    MATH  Google Scholar 

  46. Mehner, J.: Entwurf in der Mikrosystemtechnik. Habilitationsschrift, Dresden University Press, 2000

    Google Scholar 

  47. Mehner, J.E.; Gabbay, L.D.; Senturia, S.D.: Computer-aided generation of nonlinear reduced-order dynamic macromodels-II: Stress-stiffened case. Journal of Microelectromechanical Systems 9(2000)2, 270–278.

    Article  Google Scholar 

  48. Modelica: siehe http://modelica.org; viele links zu Publikationen über Modelica, das Language Reference Manual, die Bibliotheken usw.

  49. Martin, R.; Schwarz, P.; Haase, J.: TSMG-ein Werkzeug für die gekoppelte thermisch-elektrische Simulation. 18.CAD-FEM_Users_Meeting, Friedrichshafen 2000, S. 1.3.6/1–8.

    Google Scholar 

  50. Mehner, J.; Wibbeler, J.; Bennini, F,; Dötzel, G.: Modeling and simulation of micromechanical components. Proc. Workshop System Design Automation, Rathen, 2000, 163–177.

    Google Scholar 

  51. Neul, R. et al.: A modeling approach to include mechanical microsystem components into system simulation. Proc. Design, Automation & Test Conf. (DATE’98), Paris, 1998, 510–517.

    Google Scholar 

  52. Nguyen, T. V.: Recursive conv01ution and discrete time domain simulation of lossy coupled transmission lines. IEEE Trans. CAD 13(1994)10, 1301–1305.

    Google Scholar 

  53. Otte, G.; Reitz, S.; Haase, J.: Generation of linear models using simulation results. Proc. 4. IMACS Symp. MATHMOD, Wien 2003, 436–443.

    Google Scholar 

  54. Parodat, S.: MARABU-Ein Werkzeug zur Approximation nichtlinearer Kennlinien mit radialen Basisfunktionen. Proc. 6. Workshop „Methoden und Werkzeuge zum Entwurf von Mikrosystemen“, Paderborn, 4./5. Dezember 1997, 49–58.

    Google Scholar 

  55. Pelz, G. et al.: MEXEL: Simulation of microsystems in a circuit simulator using automatic electromechanical modeling. MICRO SYSTEM Technologies, VDE-Verlag, Berlin 1994, 651–657.

    Google Scholar 

  56. Pelz, G.: Modellierung und Simulation mechatronischer Systeme. Hüthig, Heidelberg 2001.

    MATH  Google Scholar 

  57. Rai-Choudhury, P.: MEMS and MOEMS Technology and Applications. SPIE Press, Bellingham, Washington 2000.

    Google Scholar 

  58. Reitz, S.; Bastian, S.; Haase, J.; Schneider, P.; Schwarz, P.: System level modeling of microsystems using order reduction methods. Symp. „Design, Test, Integration and Packaging of MEMS/MOEMS“, Cannes, Frankreich, Mai 2002, 365–373

    Google Scholar 

  59. Reinschke, K.; Schwarz, P.: Verfahren zur rechnergestutzten Analyse linearer Netzwerke. Akademie-Verlag, Berlin 1976.

    Google Scholar 

  60. Rewienski, M.; White, J.: A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. CAD-22(2003)2, 155–170.

    Google Scholar 

  61. Romanowicz, B. F.: Methodology for the Modeling and Simulation of Microsystems. Kluwer, Dordrecht 1998.

    Google Scholar 

  62. Senturia, S.; Aluru, N. R.; White, J.: Simulating the behavior of MEMS devices: computational methods and needs. IEEE Trans. Computational Science & Engineering, January 1997, 30–54.

    Google Scholar 

  63. Schwarz, P.: Simulation von Mikrosystemen. 2. GME/ITG-Workshop „Entwurf analoger Schaltungen“, Ilmenau 1993, 247–256.

    Google Scholar 

  64. Schroth, A.: Modelle für Platten und Balken in der Mikromechanik. Dissertation, TU Dresden, 1996.

    Google Scholar 

  65. Schulte, S.: Modulare und hierarchische Simulation gekoppelter Probleme. Fortschrittberichte VDI, Reihe 20, Nr. 271, Düsseldorf: VDI-Verlag 1998.

    Google Scholar 

  66. Schwarz, P.: Microsystems CAD: from FEM to system simulation. Proc. Intern. Conf. Simulation of Semiconductor Processes and Devices (SISPAD’ 98), Leuven 1998, 141–148.

    Google Scholar 

  67. Schwarz, P.; Haase, J.: Behavioral modeling of complex heterogeneous microsystems. Proc. 1st Intern. Forum on Design Languages (FDL’98), Lausanne, Sept. 1998, 53–62.

    Google Scholar 

  68. Schwarz, P.; Wünsche, S.: Modellierung und Simulation thermisch-elektrischer Wechselwirkungen in integrierten Schaltkreisen. 13. ASIM-Tagung Simulationstechnik, Weimar 1999, 265–272.

    Google Scholar 

  69. Senturia, S. D. et al.: A computer-aided design system for microelectromechanical systems (MEMCAD). IEEE J. Microelectromechanical Systems 8(19992)1, 3–13.

    Google Scholar 

  70. Senturia, S.: CAD challenges for microsensors, microactuators, and microsystems. Proc. IEEE 86(1998)8, 1611–1626

    Article  Google Scholar 

  71. Senturia, S.D.: Microsystem Design. Kluwer, Boston 2001.

    Google Scholar 

  72. Saleh, R.; Jou, S.-J.; Newton, A.R.: Mixed-Mode Simulation and Analog Multilevel Simulation. Kluwer, Dordrecht 1994.

    MATH  Google Scholar 

  73. Schwarz, P.; Parodat, S.; Schneider, A.: Ein modulares Optimierungssystem für den Mikrosystem-und Schaltungsentwurf. 7. GMM-Workshop „Methoden und Werkzeuge zum Entwurf von Mikrosystemen“, Paderborn, Januar 1999, 195–204

    Google Scholar 

  74. Szekely, V.; Rencz, M.: Fast field Solver for thermal and electrostatic analysis. Proc. DATE’98, Paris 1998,518–523.

    Google Scholar 

  75. Teegarden, D.; Lorenz, G.; Neul, R.: How to model and simulate microgyroscopic systems. IEEE Spectrum 35(1998)7, 67–75.

    Article  Google Scholar 

  76. Voll, I.; Haase, J.: Rekursives Faltungsmodell für ein allgemeines Netzwerksimulationsprogramm. 40. Intern. Wiss. Koll. TU Ilmenau (Vol. 3), Ilmenau, Sept. 1995, 269–274.

    Google Scholar 

  77. Wachutka, G.: Tailored modeling: a way to the’ virtual microtransducer fab’? Sensor and Actuators A 46-47 (1995), 603–612.

    Article  Google Scholar 

  78. Wünsche, S.; Clauss, C; Schwarz, P.; Winkler, F.: Electrothermal simulation using simulator coupling. IEEE Trans. VLSI 5(1997)3, 277–282.

    Article  Google Scholar 

  79. White, J.: Numerical macromodeling for MEMS/NEMS. Material of National Science Foundation Workshop on Control and System Integration of Micro-and Nano-Scale-Systems, Arlington 2004. siehe http://www.engr.umd.edu/nsf/

  80. Wünsche, S.: Ein Beitrag zur Einbeziehung thermisch-elektrischer Wechselwirkungen in den Entwurfs-Prozess integrierter Schaltungen. Diss., TU Chemnitz 1998.

    Google Scholar 

  81. Zhang, T.; Chakrabarty, K.; Fair, R.B.; Microelectrofluidic Systems. CRC Press, Boca Raton, London 2002.

    Google Scholar 

Literatur

  1. C.-O. Bauer, C. Hinsch, Produkthaftung, Springer, Berlin (1994)

    Google Scholar 

  2. W. Beyer (Hrsg.), Kalibrierdienst. Baustein zur Sicherung der Produktqualität im europäischen Binnenmarkt, VDI-Berichte 843, VDI-Verlag, Düsseldorf, (1990)

    Google Scholar 

  3. A. Birolini, Qualität und Zuverlässigkeit technischer Systeme, Springer, Berlin (1988)

    MATH  Google Scholar 

  4. J. R. Black, Proc. IEEE 57 (1969) 1587

    Article  Google Scholar 

  5. I. A. Blech, C. Herring, Appl. Phys. Letters 29 (1976) 131

    Article  Google Scholar 

  6. I. A. Blech, Jour. Appl. Physics 47 (1976) 1203

    Article  Google Scholar 

  7. W. D. Brown, Advanced Electronic Packaging, IEEE Press, New York, (1999)

    Google Scholar 

  8. M. Chiao, L. Lin, Accelerated hermeticity testing of a glass-silicon package formed by rapid thermal processing aluminum-to-silicon nitride bonding, Sensors and Actuators A 97-98 (2002) 405–409

    Article  Google Scholar 

  9. J. J. Clement, J. R. Lloyd, C. V. Thompson, Proc. Mat. Res. Soc. Symp. (1995) 391

    Google Scholar 

  10. W. Denson, M. G. Priore, Automotive Reliability Prediction SAE Paper 870050 (1987)

    Google Scholar 

  11. F. M. D’Heurle, J. M. Harper, Thin Solid Films 171 (1989) 81

    Article  Google Scholar 

  12. DIN 55350-Begriffe der Qualitätssicherung und Statistik

    Google Scholar 

  13. DIN 40041-Zuverlässigkeit (Begriffe), DIN Berlin, (1990)

    Google Scholar 

  14. DIN EN ISO 9000-1, Normen zum Qualitätsmanagement und zur Qualitätssicherung/QM-Darlegung, Teil 1: Leitfaden zur Auswahl und Anwendung

    Google Scholar 

  15. Qualitätsmanagementsysteme, Modell zur Qualitätssicherung/QM-Darlegung in Design, Entwicklung, Produktion, Montage und Wartung

    Google Scholar 

  16. Qualitätsmanagementsysteme, Modell zur Qualitätssicherung/QM-Darlegung in Produktion, Montage und Wartung

    Google Scholar 

  17. Qualitätsmanagementsysteme, Modell zur Qualitätssicherung/QM-Darlegung bei der Endprüfung

    Google Scholar 

  18. Electronic Parts Reliability Data, A Compendium of Commercial and Military Device Field Failure Rates, W. Denson, W. Crowell, P. Jaworski, D. Mahar, Reliability Analysis Center, Rome, NY, (1997)

    Google Scholar 

  19. R. G. Filippi, G. A. Biery, R. A. Wachnik, Jour. Appl. Physics 78 (1995) 3756

    Article  Google Scholar 

  20. P. A. Flinn, C. Chiang, J. Appl. Physics 67 (1990) 2927

    Article  Google Scholar 

  21. C.-K. Hu, P. S. Ho, M. B. Small, Jour. Appl. Phys. 74 (1993) 969

    Article  Google Scholar 

  22. R. E. Jones, Jr., M. L. Basehore, Appl. Physics Letters 50 (1987) 725

    Article  Google Scholar 

  23. G. F. Kamiske, J.-P. Bauer, Qualitätsmanagement von A bis Z, Carl Hanser, München, Wien, (1995)

    Google Scholar 

  24. H. Koch, R. Müller, Zuverlässigkeitssicherung bei der Entwicklung von Seriengeräten, Siemens AG, München, (1982)

    Google Scholar 

  25. J. R. Lloyd, R. H. Koch, Appl. Phys. Letters 52 (1988) 194

    Article  Google Scholar 

  26. J. R. Lloyd, persönliche Mitteilung, November (1997)

    Google Scholar 

  27. S. S. Manson, Thermal Stress and Low-Cycle Fatigue, Pennsylvania State University, (1966)

    Google Scholar 

  28. Motorola, How we calculate reliability & qualification data, Firmeninformation (1997)

    Google Scholar 

  29. A. S. Oates, Microelectron. Reliab. 36 (1996) 925

    Article  Google Scholar 

  30. T. Pfeifer, Qualitätsmanagement, Carl Hanser, München, (1993)

    Google Scholar 

  31. H. U. Schreiber, Solid State Electronics 24 (1981) 583

    Article  Google Scholar 

  32. W. L. Schultz, Reliability Engineering, Intersil, (1999)

    Google Scholar 

  33. F. Süßemilch, Untersuchung der Elektromigration in Metallisierungssystemen für integrierte Schaltkreise, Diplomarbeit FH Wiesbaden, (1998)

    Google Scholar 

  34. Quality and reliability report 1998, TEMIC Semiconductors, (1998)

    Google Scholar 

  35. D. Widmann, H. Mader, H. Friedrich, Technologie hochintegrierter Schaltungen, Springer, Berlin, (1996)93

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, Wiesbaden

About this chapter

Cite this chapter

(2006). Systemintegration. In: Praxiswissen Mikrosystemtechnik. Vieweg+Teubner. https://doi.org/10.1007/978-3-8348-9105-1_4

Download citation

Publish with us

Policies and ethics