Holomorphic maps: Geometric aspects

  • Wolfgang Fischer
  • Ingo Lieb


We study holomorphic, in particular biholomorphic, maps between domains in c and, in one case, in c n , n > 1. These maps are for n = 1 conformal (angle and orientation preserving); so we shall use the terms biholomorphic and conformal interchangeably in this case. For n > 1 we consistently use biholomorphic. Automorphisms of domains, i.e. biholomorphic self-maps, are determined for disks resp. half-planes, the entire plane, and the sphere: they form groups consisting of Möbius transformations (VII.1). The proof of this fact relies on an important growth property of bounded holomorphic functions: the Schwarz lemma 1.3. Because the automorphism group of the unit disk (or upper half plane) acts transitively, it gives rise – according to F. Klein's Erlangen programme – to a geometry, which turns out to be the hyperbolic (non-euclidean) geometry (VII.2 and 3). The unit disk is conformally equivalent to almost all simply connected plane domains: Riemann's mapping theorem, proved in VII.4. For n > 1 even the immediate generalisations of the disk – the polydisk and the unit ball – are not biholomorphically equivalent (VII.4). Riemann's mapping theorem can be generalised to the general uniformization theorem (VII.4): a special but exceedingly useful case of this is the modular map λ which we introduce in VII.7. Its construction uses tools that are also expedient for other purposes: harmonic functions (with a solution of the Dirichlet problem for disks) and Schwarz's reflection principle (VII.5 and 6). The existence of λ finally yields two important classical results: Montel's and Picard's “big theorems”.


Harmonic Function Holomorphic Function Unit Disk Geometric Aspect Hyperbolic Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012

Authors and Affiliations

  • Wolfgang Fischer
    • 1
  • Ingo Lieb
    • 2
  1. 1.Faculty 3 - MathematicsUniversity of BremenBremenGermany
  2. 2.Mathematical InstituteUniversity of BonnBonnGermany

Personalised recommendations