Skip to main content

Data Visualization

  • Chapter
  • First Online:

Abstract

Data can often be very effectively analyzed using visualization techniques. Standard visualization methods for object data are plots and scatter plots. To visualize high-dimensional data, projection methods are necessary. We present linear projection (principal component analysis, Karhunen-Lo`eve transform, singular value decomposition, eigenvector projection, Hotelling transform, proper orthogonal decomposition) and nonlinear projection methods (multidimensional scaling, Sammon mapping, auto-associator). Data distributions can be estimated and visualized using histogram techniques. Periodic time series can be analyzed and visualized using spectral analysis (cosine and sine transforms, amplitude and phase spectra).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New York, 1974.

    Google Scholar 

  2. D. Freedman and P. Diaconis. On the histogram as a density estimator: L2 theory. Probability Theory and Related Fields, 57(4):453–476, December 1981.

    MathSciNet  MATH  Google Scholar 

  3. A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs, 1986.

    Google Scholar 

  4. K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(6):559–572, 1901.

    Google Scholar 

  5. T. A. Runkler. Fuzzy histograms and fuzzy chi–squared tests for independence. In IEEE International Conference on Fuzzy Systems, volume 3, pages 1361–1366, Budapest, July 2004.

    Google Scholar 

  6. J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18(5):401–409, 1969.

    Google Scholar 

  7. D. W. Scott. On optimal and data–based histograms. Biometrika, 66(3):605–610, 1979.

    MATH  Google Scholar 

  8. H. A. Sturges. The choice of a class interval. Journal of the American Statistical Association, pages 65–66, 1926.

    Google Scholar 

  9. W. S. Torgerson. Theory and Methods of Scaling. Wiley, New York, 1958.

    Google Scholar 

  10. J. W. Tukey. Exploratory Data Analysis. Addison Wesley, Reading, 1987.

    Google Scholar 

  11. G. Young and A. S. Householder. Discussion of a set of points in terms of their mutual distances. Psychometrika, 3:19–22, 1938.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Runkler .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Runkler, T. (2012). Data Visualization. In: Data Analytics. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-8348-2589-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-8348-2589-6_4

  • Published:

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-8348-2588-9

  • Online ISBN: 978-3-8348-2589-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics