Skip to main content

Clustering

  • Chapter
  • First Online:
Data Mining

Part of the book series: Computational Intelligence ((CI))

  • 20k Accesses

Zusammenfassung

Clustering ist ein unüberwachtes Lernverfahren , bei dem unmarkierte Daten Clustern zugeordnet werden. Falls die zu clusternden Daten auch Klassen zugeordnet sind, so können die erhaltenen Clusterzugehörigkeiten möglicherweise den Klassenzugehörigkeiten entsprechen. Cluster- und Klassenzugehörigkeiten können jedoch auch verschieden sein. Cluster können mathematisch mit Hilfe von Mengen, Partitionsmatrizen und/oder Cluster-Prototypen spezifiziert werden. Sequenzielles Clustering (z. B. Single-Linkage, Complete-Linkage, Average-Linkage, Ward-Methode) lässt sich einfach implementieren, hat aber einen hohen Rechenaufwand. Partitionsbasiertes Clustering kann mit scharfen, unscharfen, possibilistischen oder robusten Clustermodellen definiert werden. Clusterprototypen können verschiedene geometrische Formen annehmen (z. B. Hypersphären, Ellipsoide, Linien, Hyperebenen, Kreise oder kompliziertere Formen). Relationale Clustermodelle finden Cluster in relationalen Daten. Dabei kann auch der Kernel-Trick angewendet werden. Die Clustertendenz gibt an, ob die Daten überhaupt Cluster enthalten. Clustervaliditätsmaße quantifizieren die Güte des Clusterergebnisses und ermöglichen, die Anzahl der Cluster abzuschätzen. Auch heuristische Methoden wie die selbstorganisierende Karte können zum Clustering verwendet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. G. B. Ball and D. J. Hall. Isodata, an iterative method of multivariate analysis and pattern classification. In IFIPS Congress, 1965.

    Google Scholar 

  2. J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, 1981.

    Google Scholar 

  3. J. C. Bezdek. Fuzzy models—what are they, and why? IEEE Transactions on Fuzzy Systems, 1(1):1–6, 1993.

    Google Scholar 

  4. J. C. Bezdek and R. J. Hathaway. Optimization of fuzzy clustering criteria using genetic algorithms. In IEEE Conference on Evolutionary Computation, Orlando, volume 2, pages 589–594, June 1994.

    Google Scholar 

  5. J. C. Bezdek, C. Coray, R. Gunderson, and J. Watson. Detection and characterization of cluster substructure, I. Linear structure: Fuzzy c–lines. SIAM Journal on Applied Mathematics, 40(2):339–357, April 1981.

    Google Scholar 

  6. J. C. Bezdek, C. Coray, R. Gunderson, and J. Watson. Detection and characterization of cluster substructure, II. Fuzzy c–varieties and convex combinations thereof. SIAM Journal on Applied Mathematics, 40(2):358–372, April 1981.

    Google Scholar 

  7. J. C. Bezdek, J. M. Keller, R. Krishnapuram, and N. R. Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer, Norwell, 1999.

    Google Scholar 

  8. R. N. Davé. Fuzzy shell clustering and application to circle detection in digital images. International Journal on General Systems, 16:343–355, 1990.

    Google Scholar 

  9. R. N. Davé. Characterization and detection of noise in clustering. Pattern Recognition Letters, 12:657–664, 1991.

    Google Scholar 

  10. W. H. E. Day and H. Edelsbrunner. Efficient algorithms for agglomerative hierarchical clustering methods. Journal of Classification, 1(1):7–24, 1984.

    Google Scholar 

  11. H. Fang and Y. Saad. Farthest centroids divisive clustering. In International Conference on Machine Learning and Applications, pages 232–238, 2008.

    Google Scholar 

  12. M. Girolami. Mercer kernel–based clustering in feature space. IEEE Transactions on Neural Networks, 13:780–784, 2002.

    Google Scholar 

  13. E. E. Gustafson and W. C. Kessel. Fuzzy clustering with a covariance matrix. In IEEE International Conference on Decision and Control, San Diego, pages 761–766, 1979.

    Google Scholar 

  14. R. J. Hathaway and J. C. Bezdek. NERF c–means: Non–Euclidean relational fuzzy clustering. Pattern Recognition, 27:429–437, 1994.

    Google Scholar 

  15. R. J. Hathaway and J. C. Bezdek. Optimization of clustering criteria by reformulation. IEEE Transactions on Fuzzy Systems, 3(2):241–245, May 1995.

    Google Scholar 

  16. R. J. Hathaway, J. W. Davenport, and J. C. Bezdek. Relational duals of the c–means algorithms. Pattern Recognition, 22:205–212, 1989.

    Google Scholar 

  17. R. J. Hathaway, J. M. Huband, and J. C. Bezdek. Kernelized non–Euclidean relational fuzzy c–means algorithm. In IEEE International Conference on Fuzzy Systems, pages 414–419, Reno, May 2005.

    Google Scholar 

  18. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, 1988.

    Google Scholar 

  19. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264–323, 1999.

    Google Scholar 

  20. T. Kohonen. Automatic formation of topological maps of patterns in a self–organizing system. In E. Oja and O. Simula, editors, Scandinavian Conference on Image Analysis, pages 214–220, Helsinki, 1981.

    Google Scholar 

  21. T. Kohonen. Self–Organizing Maps. Springer, Berlin, 2001.

    Google Scholar 

  22. R. Krishnapuram and J. M. Keller. A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1(2):98–110, May 1993.

    Google Scholar 

  23. R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi. Low–complexity fuzzy relational clustering algorithms for web mining. IEEE Transactions on Fuzzy Systems, 9(4):595–607, August 2001.

    Google Scholar 

  24. T. A. Runkler. The effect of kernelization in relational fuzzy clustering. In GMA/GI Workshop Fuzzy Systems and Computational Intelligence, Dortmund, pages 48–61, November 2006.

    Google Scholar 

  25. T. A. Runkler. Kernelized non–Euclidean relational possibilistic c–means clustering. In IEEE Three Rivers Workshop on Soft Computing in Industrial Applications, Passau, August 2007.

    Google Scholar 

  26. T. A. Runkler. Relational fuzzy clustering. In J. Valente de Oliveira and W. Pedrycz, editors, Advances in Fuzzy Clustering and its Applications, chapter 2, pages 31–52. Wiley, 2007.

    Google Scholar 

  27. T. A. Runkler. Wasp swarm optimization of the c-means clustering model. International Journal of Intelligent Systems, 23(3):269–285, February 2008.

    Google Scholar 

  28. J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 2(2): 169–194, 1998.

    Google Scholar 

  29. B. Schölkopf, A.J. Smola, and K. R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

    Google Scholar 

  30. P. Sneath and R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1973.

    Google Scholar 

  31. J. H. Ward. Hierarchical grouping to optimize an objective function. Journal of American Statistical Association, 58(301):236–244, 1963.

    Google Scholar 

  32. D. J. Willshaw and C. von der Malsburg. How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society London, B194:431–445, 1976.

    Google Scholar 

  33. M. P. Windham. Cluster validity for the fuzzy c–means clustering algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(4):357–363, July 1982.

    Google Scholar 

  34. Z.-D. Wu, W.-X. Xie, and J.-P. Yu. Fuzzy c–means clustering algorithm based on kernel method. In International Conference on Computational Intelligence and Multimedia Applications, pages 49–54, Xi’an, 2003.

    Google Scholar 

  35. D.-Q. Zhang and S.-C. Chen. Fuzzy clustering using kernel method. In International Conference on Control and Automation, pages 123–127, 2002.

    Google Scholar 

  36. D.-Q. Zhang and S.-C. Chen. Kernel–based fuzzy and possibilistic c–means clustering. In International Conference on Artificial Neural Networks, pages 122–125, Istanbul, 2003.

    Google Scholar 

  37. D.-Q. Zhang and S.-C. Chen. Clustering incomplete data using kernel–based fuzzy c–means algorithm. Neural Processing Letters, 18:155–162, 2003.

    Google Scholar 

  38. R. Zhang and A.I. Rudnicky. A large scale clustering scheme for kernel k–means. In International Conference on Pattern Recognition, pages 289–292, Quebec, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Runkler Prof. Dr.-Ing. .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Runkler, T. (2015). Clustering. In: Data Mining. Computational Intelligence. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-8348-2171-3_9

Download citation

Publish with us

Policies and ethics