Advertisement

The residues of quantum field theory - numbers we should know

  • Dirk Kreimer
Part of the Aspects of Mathematics book series (ASMA)

Abstract

We discuss in an introductory manner structural similarities between the polylogarithm and Green functions in quantum field theory.

Keywords

Hopf Algebra Anomalous Dimension Feynman Rule Laurent Series Hochschild Cohomology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Kreimer: Locality, Hochschild cohomology and Dyson-Schwinger equations. In preparation.Google Scholar
  2. [2]
    S. Bloch: Function Theory of Polylogarithms. In: Structural properties of polylogarithms, 275–285, Math. Surveys Monogr., 37, Amer. Math. Soc., Providence, RI, 1991.Google Scholar
  3. [3]
    D. Kreimer: New mathematical structures in renormalizable quantum field theories. Annals Phys. 303 (2003) 179 [Erratum-ibid. 305 (2003) 79] [arXiv:hep-th/0211136].MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    D. Kreimer: Factorization in quantum field theory: an exercise in Hopf algebras and local singularities. Preprint IHES/P/03/38, hep-th/0306020.Google Scholar
  5. [5]
    A. Connes and D. Kreimer: Hopf algebras, renormalization and non-commutative geometry. Commun. Math. Phys. 199 (1998), 203–242; hep-th/9808042MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    K. Ebrahimi-Fard, D. Kreimer: Integrable Renormalization II: The General Case. IHES/P/04/08, hep-th/0403118.Google Scholar
  7. [7]
    D. Kreimer: Chen’s iterated integral represents the operator product expansion. Adv. Theor. Math. Phys. 3 (2000) 3 [Adv. Theor. Math. Phys. 3 (1999) 627] [arXiv:hep-th/9901099].MathSciNetGoogle Scholar
  8. [8]
    R. Delbourgo, D. Kreimer: Using the Hopf algebra structure of QFT in calculations. Phys. Rev. D 60 (1999) 105025 [arXiv:hep-th/9903249].CrossRefMathSciNetGoogle Scholar
  9. [9]
    C. Bergbauer and D. Kreimer: The Hopf algebra of rooted trees in Epstein-Glaser renormalization. Preprint IHES/P/04/12, hep-th/0403207.Google Scholar
  10. [10]
    D.J. Broadhurst, D. Kreimer: Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality. Nucl. Phys. B 600 (2001) 403 [arXiv:hepth/0012146].MATHCrossRefGoogle Scholar
  11. [11]
    R. Delbourgo: Self-consistent nonperturbative anomalous dimensions. J. Phys. A 36 (2003) 11697 [arXiv:hep-th/0309047].MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. Connes and D. Kreimer: Renormalization in quantum field theory and the Riemann-Hilbert problem I: the Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210 (2000) 249–273; hep-th/9912092MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    A. Connes and M. Marcolli: From Physics to Number Theory via Noncommutative Geometry I: Quantum Statistical Mechanics of Q-lattices. Preprint math.nt/0404128.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlag ∣ GWV Fachverlage GmbH, Wiesbaden 2006

Authors and Affiliations

  • Dirk Kreimer
    • 1
    • 2
  1. 1.Institut des Hautes Études ScientifiquesBures-sur-Yvette
  2. 2.Center for Mathematical PhysicsBoston UniversityBoston

Personalised recommendations