Advertisement

Introduction to Hopf-Cyclic Cohomology

  • Masoud Khalkhali
  • Bahram Rangipour
Part of the Aspects of Mathematics book series (ASMA)

Abstract

We review the recent progress in the study of cyclic cohomology in the presence of Hopf symmetry

Keywords

Hopf Algebra Modular Form Noncommutative Geometry Monoidal Category Cyclic Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Akbarpour, and M. Khalkhali, Hopf algebra equivariant cyclic homology and cyclic homology of crossed product algebras. J. Reine Angew. Math., 559 (2003), 137–152.MATHMathSciNetGoogle Scholar
  2. [2]
    R. Akbarpour, and M. Khalkhali, Equivariant cyclic cohomology of H-algebras. K-Theory 29 (2003), no. 4, 231–252.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Connes, Cohomologie cyclique et foncteurs Extn. (French) (Cyclic cohomology and functors Extn) C. R. Acad. Sci. Paris Sr. I Math. 296 (1983), no. 23, 953–958.MATHMathSciNetGoogle Scholar
  4. [4]
    A. Connes, Noncommutative differential geometry. Inst. Hautes tudes Sci. Publ. Math. No. 62 (1985), 257–360.MathSciNetGoogle Scholar
  5. [5]
    A. Connes, Cyclic cohomology and the transverse fundamental class of a foliation. Geometric methods in operator algebras (Kyoto, 1983), 52–144, Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 198.Google Scholar
  6. [6]
    A. Connes, and M. Marcolli, From physics to number theory via noncommutative geometry. Part I: Quantum statistical mechanics of Q-lattices. math.NT/0404128.Google Scholar
  7. [7]
    A. Connes, and M. Marcolli, From physics to number theory via noncommutative geometry, Part II: Renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory. hep-th/0411114.Google Scholar
  8. [8]
    A. Connes and H. Moscovici, Local index formula in noncommutative geometry, Geom. Funct. Anal. 5 (1995), no. 2, 174–243.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Connes and H. Moscovici, Hopf algebras, Cyclic Cohomology and the transverse index theorem, Comm. Math. Phys. 198 (1998), no. 1, 199–246.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    A. Connes and H. Moscovici, Cyclic cohomology and Hopf algebras. Lett. Math. Phys. 48 (1999), no. 1, 97–108.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    A. Connes, and H. Moscovici, Cyclic cohomology and Hopf algebra symmetry. Conference Mosh Flato 1999 (Dijon). Lett. Math. Phys. 52 (2000), no. 1, 1–28.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. Connes and H. Moscovici, Modular Hecke algebras and their Hopf symmetry, to appear in the Moscow Mathematical Journal (volume dedicated to Pierre Cartier).Google Scholar
  13. [13]
    A. Connes and H. Moscovici, Rankin-Cohen brackets and the Hopf algebra of transverse geometry, to appear in the Moscow Mathematical Journal (volume dedicated to Pierre Cartier).Google Scholar
  14. [14]
    P. M. Hajac, M. Khalkhali, B. Rangipour, and Y. Sommerhäuser, Stable anti-Yetter-Drinfeld modules. C. R. Math. Acad. Sci. Paris 338 (2004), no. 8, 587–590.MATHMathSciNetGoogle Scholar
  15. [15]
    P. M. Hajac, M. Khalkhali, B. Rangipour, and Y. Sommerhäuser, Hopf-cyclic homology and cohomology with coefficients. C. R. Math. Acad. Sci. Paris 338 (2004), no. 9, 667–672.MATHMathSciNetGoogle Scholar
  16. [16]
    P. Jara, D. Stefan, Cyclic homology of Hopf Galois extensions and Hopf algebras. Preprint math/0307099.Google Scholar
  17. [17]
    A. Joyal, and R. Street, The geometry of tensor calculus. I. Adv. Math. 88 (1991), no. 1, 55–112.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Ch. Kassel, Quantum groups. Graduate Texts in Mathematics, 155. Springer-Verlag, New York, 1995.Google Scholar
  19. [19]
    A. Kaygun, Bialgebra cyclic homology with coefficients. Preprint math/0408094.Google Scholar
  20. [20]
    M. Khalkhali, and B. Rangipour, A new cyclic module for Hopf algebras. K-Theory 27(2) (2002), 111–131.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    M. Khalkhali, and B. Rangipour, Invariant cyclic homology. K-Theory 28(2) (2003), 183–205.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    M. Khalkhali, and B. Rangipour, A note on cyclic duality and Hopf algebras. Comm. in Algebra 33 (2005) 763–773.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    M. Khalkhali, and B. Rangipour, Cup products in Hopf-cyclic cohomology. C.R. Acad. Sci. Paris Ser. I 340 (2005), 9–14.MATHMathSciNetGoogle Scholar
  24. [24]
    M. Marcolli, Lectures on arithmetic noncommutative geometry. math.QA/0409520.Google Scholar
  25. [25]
    S. Mac Lane, categories for the working mathematician. Second edition. Graduate Texts in Mathematics, 5. Springer-Verlag, New York, 1998.MATHGoogle Scholar
  26. [26]
    S. Majid, Foundations of quantum group theory. Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  27. [27]
    D. Radford, and J. Towber, Yetter-Drinfeld categories associated to an arbitrary bialgebra. J. Pure Appl. Algebra 87 (1993), 259–279.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    M. Staic, personal communication.Google Scholar
  29. [29]
    M. Sweedler, Hopf algebras. Mathematics Lecture Note Series W. A. Benjamin, Inc., New York 1969.Google Scholar
  30. [30]
    R. Taillefer, Cyclic Homology of Hopf Algebras. K-Theory 24 (2001), no. 1, 69–85.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    C. Voigt, personal communication.Google Scholar
  32. [32]
    D. Yetter, Quantum groups and representations of monoidal categories. Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 2, 261–290.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlag ∣ GWV Fachverlage GmbH, Wiesbaden 2006

Authors and Affiliations

  • Masoud Khalkhali
    • 1
  • Bahram Rangipour
    • 2
  1. 1.Department of MathematicsUniversity of Western OntarioLondonCanada
  2. 2.Department of Mathematics and StatisticsUniversity of VictoriaVictoriaCanada

Personalised recommendations