Skip to main content

Part of the book series: Aspects of Mathematics ((ASMA))

Abstract

Archimedean cohomology provides a cohomological interpretation for the calculation of the local L-factors at archimedean places as zeta regularized determinant of a log of Frobenius. In this paper we investigate further the properties of the Lefschetz and log of monodromy operators on this cohomology. We use the Connes-Kreimer formalism of renormalization to obtain a fuchsian connection whose residue is the log of the monodromy. We also present a dictionary of analogies between the geometry of a tubular neighborhood of the “fiber at arithmetic infinity” of an arithmetic variety and the complex of nearby cycles in the geometry of a degeneration over a disk, and we recall Deninger’s approach to the archimedean cohomology through an interpretation as global sections of a analytic Rees sheaf. We show that action of the Lefschetz, the log of monodromy and the log of Frobenius on the archimedean cohomology combine to determine a spectral triple in the sense of Connes. The archimedean part of the Hasse-Weil L-function appears as a zeta function of this spectral triple. We also outline some formal analogies between this cohomological theory at arithmetic infinity and Givental’s homological geometry on loop spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.V. Anosov, A.A. Bolibruch, The Riemann-Hilbert problem, Aspects of Mathematics Vol.22, Vieweg, 1994.

    Google Scholar 

  2. D.M. Austin, P.J. Braam, Morse-Bott theory and equivariant cohomology, Floer Memorial Volume, Birkhäuser 1995.

    Google Scholar 

  3. J. Burgos, Arithmetic Chow rings and Deligne-Beilinson cohomology, J.Alg.Geom. 6 (1997) N.2 335–377.

    MATH  MathSciNet  Google Scholar 

  4. A. Connes, Trace formula in noncommutative geometry and zeros of the Riemann zeta function, Selecta Math. (N.S.) 5 (1999), no. 5, 29–106.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Connes, Symetries Galoisiennes et Renormalisation, preprint math.QA/0211199.

    Google Scholar 

  6. A. Connes, Geometry from the spectral point of view. Lett. Math. Phys. 34 (1995), no. 3, 203–238.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Connes, D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. II. The β-function, diffeomorphisms and the renormalization group. Comm. Math. Phys. 216 (2001), no. 1, 215–241.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Connes, M. Marcolli, From physics to number theory via noncommutative geometry, in preparation.

    Google Scholar 

  9. C. Consani, Double complexes and Euler L-factors, Compositio Math. 111 (1998), 323–358.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. Consani, M. Marcolli, Noncommutative geometry, dynamics, and ∞-adic Arakelov geometry, to appear in Selecta Mathematica.

    Google Scholar 

  11. C. Deninger On the Γ-factors attached to motives, Invent. Math. 104 (1991) 245–261.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Deninger Local L-factors of motives and regularized determinants, Invent. Math. 107 (1992) 135–150.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Deninger On the Γ-factors of motives II, Doc. Math. 6 (2001), 69–97.

    MathSciNet  Google Scholar 

  14. S.I. Gelfand, Yu.I. Manin, Homological algebra, EMS Vol.38, Springer Verlag, 1999.

    Google Scholar 

  15. A.B. Givental, Homological geometry. I. Projective hypersurfaces. Selecta Math. (N.S.) 1 (1995), no. 2, 325–345.

    Article  MATH  MathSciNet  Google Scholar 

  16. A.B. Givental, B. Kim, Quantum cohomology of flag manifolds and Toda lattices. Comm. Math. Phys. 168 (1995), no. 3, 609–641.

    Article  MATH  MathSciNet  Google Scholar 

  17. V. Golyshev, V. Lunts, D. Orlov, Mirror symmetry for abelian varieties, J. Algebraic Geom. 10 (2001), no. 3, 433–496.

    MATH  MathSciNet  Google Scholar 

  18. F. Guillén, V. Navarro Aznar, Sur le théorème local des cycles invariants. Duke Math. J. 61 (1990), no. 1, 133–155.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Lang, SL2(ℝ), Addison-Wesley, 1975.

    Google Scholar 

  20. E. Looijenga, V.A. Lunts, A Lie algebra attached to a projective variety, Invent. Math. 129 (1997) 361–412.

    Article  MATH  MathSciNet  Google Scholar 

  21. Yu.I. Manin, Moduli, motives, mirrors, Progress in Matematics Vol. 201, Birkhäuser 2001, pp. 53–73.

    MathSciNet  Google Scholar 

  22. M. Marcolli, B.L. Wang, Variants of equivariant Seiberg-Witten Floer homology, preprint math.GT/0211238.

    Google Scholar 

  23. S. Piunikhin, D. Salamon, M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology. Contact and symplectic geometry (Cambridge, 1994), 171–200, Publ. Newton Inst., 8, Cambridge Univ. Press, Cambridge, 1996.

    Google Scholar 

  24. M. Saito, Modules de Hodge Polarisable. Publ. Res. Inst. Math. Sci. 24 (1988) 849–995.

    MATH  MathSciNet  Google Scholar 

  25. J. P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures). Sém. Delange-Pisot-Poitou, exp. 19, 1969/70.

    Google Scholar 

  26. P. Deligne, Groupes de Monodromie en Géométrie Algébrique. Lecture Notes in Mathematics 340, Springer-Verlag, New York 1973.

    Google Scholar 

  27. C. Simpson, The Hodge filtration on nonabelian cohomology, Proc. Symp. Pure Math. 62(2) (1997) 217–281.

    MathSciNet  Google Scholar 

  28. J. Steenbrink, Limits of Hodge structures. Invent. Math. 31 (1976), 229–257.

    Article  MATH  MathSciNet  Google Scholar 

  29. R.O. Wells, Differential analysis on complex manifolds, Springer Verlag, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Friedr. Vieweg & Sohn Verlag ∣ GWV Fachverlage GmbH, Wiesbaden

About this chapter

Cite this chapter

Consani, C., Marcolli, M. (2006). Archimedean cohomology revisited. In: Consani, C., Marcolli, M. (eds) Noncommutative Geometry and Number Theory. Aspects of Mathematics. Vieweg. https://doi.org/10.1007/978-3-8348-0352-8_5

Download citation

Publish with us

Policies and ethics