Holomorphic bundles on 2-dimensional noncommutative toric orbifolds

  • A. Polishchuk
Part of the Aspects of Mathematics book series (ASMA)


We define the notion of a holomorphic bundle on the noncommutative toric orbifold T θ/G associated with an action of a finite cyclic group G on an irrational rotation algebra. We prove that the category of such holomorphic bundles is abelian and its derived category is equivalent to the derived category of modules over a finite-dimensional algebra ∧. As an application we finish the computation of K 0-groups of the crossed product algebras describing the above orbifolds initiated in [18], [29], [30], [12] and [13]. Also, we describe a torsion pair in the category of ∧-modules, such that the tilting with respect to this torsion pair gives the category of holomorphic bundles on T θ/G.


Vector Bundle Elliptic Curve Full Subcategory Coherent Sheave Galois Covering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Bezrukavnikov, Perverse coherent sheaves (after Deligne), preprint math.AG/0005152.Google Scholar
  2. [2]
    T. Bridgeland, Stability conditions on triangulated categories, preprint math.AG/0212237.Google Scholar
  3. [3]
    A. Bondal, Representations of associative algebras and coherent sheaves, Math. USSR Izvestiya 34 (1990), 23–42).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Bondal, M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Moscow Math. J. 3 (2003), 1–36.MATHGoogle Scholar
  5. [5]
    A. Bondal, M. Kapranov, Representable functors, Serre functors, and mutations, Math. USSR Izvestiya 35 (1990), 519–541.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Bondal, M. Kapranov, Framed triangulated categories, Math. USSR-Sbornik 70 (1991), 93–107.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    A. Bondal, D. Orlov, Semiorthogonal decompositions for algebraic varieties, preprint alggeom/9506012.Google Scholar
  8. [8]
    O. Bratteli, G. Elliott, D. Evans, A. Kishimoto, Non-commutative spheres. I, Internat. J. Math. 2 (1991), 139–166.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    O. Bratteli, G. Elliott, D. Evans, A. Kishimoto, Non-commutative spheres. II. Rational rotations, J. Operator Theory 27 (1992), 53–85.MATHMathSciNetGoogle Scholar
  10. [10]
    O. Bratteli, A. Kishimoto, Non-commutative spheres. III. Irrational rotations, Comm. Math. Phys. 147 (1992), 605–624.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    T. Bridgeland, A. King, M. Reid, The McKay correspondence as an equivalence of derived categories, J. AMS 14 (2001), 535–554.MATHMathSciNetGoogle Scholar
  12. [12]
    J. Buck, S. Walters, Connes-Chern characters of hexic and cubic modules, preprint 2004, 43 pages.Google Scholar
  13. [13]
    J. Buck, S. Walters, Non commutative spheres associated with the hexic transform and their K-theory, preprint 2004, 28 pages.Google Scholar
  14. [14]
    P. Gabriel, Indecomposable representations. II Symposia Mathematica, XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), 81–104. Academic Press, London, 1973.Google Scholar
  15. [15]
    W. Geigle, H. Lenzing, A class of weighted projective curves arising in the representation theory of finite-dimensional algebras, in Singularities, representations of algebras and vector bundles, Springer LNM 1273 (1987), 265–297.Google Scholar
  16. [16]
    D. Happel, I. Reiten, S. O. Smalo, Tilting in abelian categories and quasitilted algebras, Memoirs AMS 575, 1996.Google Scholar
  17. [17]
    G. Harder, M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215–248.CrossRefMathSciNetGoogle Scholar
  18. [18]
    A. Kumjian, On the K-theory of the symmetrized non-commutative torus, C. R. Math. Rep. Acad. Sci. Canada 12(1990), 87–89.MathSciNetGoogle Scholar
  19. [19]
    H. Lenzing, H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in Representations of algebras (Ottawa, ON, 1992), 313–337, CMS Conf. Proc. 14, Providence, RI, 1993.MathSciNetGoogle Scholar
  20. [20]
    H. Lenzing, H. Meltzer, Tilting sheaves and concealed-canonical algebras, in Representation theory of algebras (Cocoyoc, 1994), 455–473, CMS Conf. Proc. 18, Providence, RI, 1996.MathSciNetGoogle Scholar
  21. [21]
    C. Phillips, Crossed products by finite cyclic group actions with the tracial Rokhlin property, preprint math.QA/0306410.Google Scholar
  22. [22]
    A. Polishchuk, Classification of holomorphic bundles on noncommutative two-tori, Documenta Math. 9 (2004), 163–181.MATHMathSciNetGoogle Scholar
  23. [23]
    A. Polishchuk, A. Schwarz, Categories of holomorphic bundles on noncommutative two-tori, Comm. Math. Phys. 236 (2003), 135–159MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    C. M. Ringel, Tame algebras and integral quadratic forms, LNM 1099, 1984.Google Scholar
  25. [25]
    A. N. Rudakov et al., Helices and vector bundles, Cambridge Univ. Press, 1990.Google Scholar
  26. [26]
    O. Schiffmann, Noncommutative projectivve curves and quantum loop algebras, preprint math.QA/0205267.Google Scholar
  27. [27]
    S. Térouanne, Sur la catégorie D b,G(X) pour G réductif fini, C.R.Math.Acad.Sci.Paris 336 (2003), 483–486.MATHMathSciNetGoogle Scholar
  28. [28]
    S. G. Walters, Projective modules over the non-commutative sphere, J. London Math. Soc. 51 (1995), 589–602.MATHMathSciNetGoogle Scholar
  29. [29]
    S. G. Walters, Chern Characters of Fourier Modules, Canad. J. Math. 52 (2000), 633–672.MATHMathSciNetGoogle Scholar
  30. [30]
    S. G. Walters, K-theory of Non-Commutative Spheres Arising from the Fourier Automorphism, Canad. J. Math. 53 (2001), 631–672.MATHMathSciNetGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlag ∣ GWV Fachverlage GmbH, Wiesbaden 2006

Authors and Affiliations

  • A. Polishchuk

There are no affiliations available

Personalised recommendations