Advertisement

On harmonic maps in noncommutative geometry

  • Giovanni Landi
Part of the Aspects of Mathematics book series (ASMA)

Abstract

We report on some recent work on harmonic maps and non-linear ζ-models in noncommutative geometry. After a general discussion we concentrate mainly on models on noncommutative tori.

Keywords

Gauge Transformation Topological Charge Noncommutative Geometry Leibniz Rule Hermitian Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BP]
    A.A. Belavin, A.M. Polyakov, Metastable states of two-dimensional isotropic ferromagnets, JETP Lett. 22 (1975) 245–247.Google Scholar
  2. [B]
    F.-P. Boca, Projections in Rotation Algebras and Theta Functions, Commun. Math. Phys. 202 (1999) 325–357.MATHCrossRefMathSciNetGoogle Scholar
  3. [C1]
    A. Connes, C*-algèbres et géométrie différentielle, C.R. Acad. Sci. Paris Sér. A 290 (1980) 599–604.MATHMathSciNetGoogle Scholar
  4. [C2]
    A. Connes, Noncommutative Geometry, Academic Press, 1994.Google Scholar
  5. [C3]
    A. Connes, Gravity coupled with matter and the foundation of noncommutative geometry, Commun. Math. Phys. 182 (1996) 155–176.MATHCrossRefMathSciNetGoogle Scholar
  6. [C4]
    A. Connes, A short survey of noncommutative geometry, J.Math. Phys. 41 (2000) 3832–3866.MATHCrossRefMathSciNetGoogle Scholar
  7. [CDS]
    A. Connes, M. Douglas, A. Schwarz, Matrix theory compactification on tori, J.High Energy Phys. 02 (1998) 003.CrossRefMathSciNetGoogle Scholar
  8. [CR]
    A. Connes, M. Rieffel, Yang-Mills for Non-commutative Two-Tori, in Operator Algebras and Mathematical Physics, Contemp. Math. 62 (1987) 237–266.MathSciNetGoogle Scholar
  9. [DKL1]
    L. Dabrowski, T. Krajewski, G. Landi, Some Properties of Non-linear δ-models in Noncommutative Geometry; Int. J. Mod. Phys. B14 (2000) 2367–2382.MathSciNetGoogle Scholar
  10. [DKL2]
    L. Dabrowski, T. Krajewski, G. Landi, Non-linear δ-models in noncommutative geometry: fields with values in finite spaces, Mod. Phys. Lett. A18 (2003) 2371–2380.MathSciNetGoogle Scholar
  11. [DS]
    M. Dieng, A. Schwarz, Differential and complex geometry of two-dimensional noncommutative tori, Lett. Math. Phys. 61 (2002) 263–270.MATHCrossRefMathSciNetGoogle Scholar
  12. [T]
    T. Krajewski, Gauge invariance of the Chern-Simons action in noncommutative geometry, ISI GUCCIA Conference ‘Quantum Groups, Noncommutative Geometry and Fundamental Physical Interactions’, Palermo December 1997, math-ph/9810015.Google Scholar
  13. [E]
    J. Eells, Harmonic maps: Selected papers of James Eells and collaborators, World Scientific, 1992.Google Scholar
  14. [G]
    K. Gawedzki, Lectures on conformal field theory, in ‘Quantum Fields and Strings: a Course for Mathematicians’, P. Deligne et al. editors, American Mathematical Society 1999; pp 727–805.Google Scholar
  15. [GSW]
    M. Green, J.H. Schwarz, E. Witten, Superstring theory, Cambridge University Press, 1987.Google Scholar
  16. [M1]
    Yu. I. Manin, Quantized theta-function, Prog. Theor. Phys. Suppl. 102 (1990) 219–228.CrossRefMathSciNetGoogle Scholar
  17. [M2]
    Yu. I. Manin, Theta functions, quantum tori and Heisenberg group, Lett. Math. Phys. 56 (2001) 295–320.MATHCrossRefMathSciNetGoogle Scholar
  18. [M3]
    Yu. I. Manin, Real multiplication and noncommutative geometry, math.QA/0202109.Google Scholar
  19. [M4]
    Yu. I. Manin. Functional equations for quantum theta functions, math.QA/0307393.Google Scholar
  20. [PV]
    M. Pimsner, D. Voiculescu, Exact Sequences for K-Groups and Ext-Groups of Certain Cross-Product C*-Algebras, J. Oper. Theory 4 (1980) 93–118.MATHMathSciNetGoogle Scholar
  21. [P-J]
    J. Polchinski, String theory, Cambridge University Press, 1998.Google Scholar
  22. [P-A]
    A. Polishchuk, Analogues of the exponential map associated with complex structures on noncommutative two-tori, math.QA/0404056.Google Scholar
  23. [PS]
    A. Polishchuk, A. Schwarz, Categories of holomorphic vector bundles on noncommutative two-tori, Commun. Math. Phys. 236 (2003) 135–159.MATHCrossRefMathSciNetGoogle Scholar
  24. [R1]
    M. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981) 415–429.MATHMathSciNetGoogle Scholar
  25. [R2]
    M. Rieffel, The Cancellation Theorem for projective Modules over irrational C*-algebras, Proc. London Math. Soc. 47 (1983) 1285–302.CrossRefGoogle Scholar
  26. [R3]
    M. Rieffel, Projective modules over higher-dimensional noncommutative tori, Can. J.Math. 40 (1988) 257–338.MATHMathSciNetGoogle Scholar
  27. [R4]
    M. Rieffel, Non-commutative Tori-A case study of Non-commutative Differentiable Manifolds Contemp. Math. 105 (1991) 191–211.MathSciNetGoogle Scholar
  28. [SW]
    N. Seiberg, E. Witten, String Theory and Noncommutative Geometry, JHEP 09 (1999) 032.CrossRefMathSciNetGoogle Scholar
  29. [S-M]
    M. Spera, Yang-Mills theory in non commutative differential geometry, Rend. Sem. Fac. Scienze Univ. Cagliari, Suppl. 58 (1988) 409–421.MathSciNetGoogle Scholar
  30. [S-A]
    A. Schwarz, Theta-functions on noncommutative tori, Lett. Math. Phys. 58 (2001) 81–90.MATHCrossRefMathSciNetGoogle Scholar
  31. [V]
    J.C. Varilly, An Introduction to Noncommutative Geometry, Lectures at EMS Summer School on NCG and Applications, Sept 1997, physics/9709045.Google Scholar
  32. [W]
    S. Walters, The AF Structure of Noncommutative Toroidal ℤ/4ℤ Orbifolds, J. Reine Angew. Math. 568 (2004) 139–196.MATHMathSciNetGoogle Scholar
  33. [Z]
    W.J. Zakrzewski, Low dimensional sigma models, Adam Hilger, Bristol 1989.MATHGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlag ∣ GWV Fachverlage GmbH, Wiesbaden 2006

Authors and Affiliations

  • Giovanni Landi
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità di TriesteTriesteItalia

Personalised recommendations