Skip to main content

Chemische Ionisation

  • Chapter
Massenspektrometrie
  • 20k Accesses

Zusammenfassung

Die Bestimmung der Molekülmasse stellt einen wichtigen Baustein zur Strukturaufklärung dar. Deshalb waren Massenspektrometriker früh auf der Suche nach Ionisationsmethoden, die schonender als die Elektronenstoßionisation (EI) sein sollten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Talrose VL; Ljubimova AK: Secondary Processes in the Ion Source of a Mass Spectrometer (Reprint From 1952). J. Mass Spectrom. 1998, 33, 502-504. 

    Google Scholar 

  2. Munson MSB; Field FH: Reactions of Gaseous Ions. XV. Methane + 1 % Ethane and Methane + 1 % Propane. J. Am. Chem. Soc. 1965, 87, 3294-3299. 

    CAS  Google Scholar 

  3. Munson MSB: Proton Affinities and the Methyl Inductive Effect. J. Am. Chem. Soc. 1965, 87, 2332-2336. 

    CAS  Google Scholar 

  4. Munson MSB; Field FH: CI-MS. I. General Introduction. J. Am. Chem. Soc. 1966, 88, 2621-2630. 

    CAS  Google Scholar 

  5. Munson MSB: Development of CI-MS. Int. J. Mass Spectrom. 2000, 200, 243-251. 

    CAS  Google Scholar 

  6. Richter WJ; Schwarz H: Chemical Ionization – a Highly Important Productive Mass Spectrometric Analysis Method. Angew. Chem. 1978, 90, 449-469. 

    CAS  Google Scholar 

  7. Harrison AG: Chemical Ionization Mass Spectrometry; 2. Aufl.; CRC Press: Boca Raton, 1992 .

    Google Scholar 

  8. Todd JFJ: Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. International Journal of Mass Spectrometry and Ion Processes 1995 , 142, 211-240. 

    CAS  Google Scholar 

  9. Griffith KS; Gellene GI: A Simple Method for Estimating Effective Ion Source Residence Time. J. Am. Soc. Mass Spectrom. 1993, 4, 787-791. 

    CAS  Google Scholar 

  10. Field FH; Munson MSB: Reactions of Gaseous Ions. XIV. Mass Spectrometric Studies of Methane at Pressures to 2 Torr. J. Am. Chem. Soc. 1965, 87, 3289-3294. 

    CAS  Google Scholar 

  11. Hunt DF; Ryan JFI: CI-MS Studies. I. Identification of Alcohols. Tetrahedron Lett. 1971, 47, 4535-4538. 

    Google Scholar 

  12. Herman JA; Harrison AG: Effect of Reaction Exothermicity on the Proton Transfer Chemical Ionization Mass Spectra of Isomeric C5 and C6 Alkanols. Can. J. Chem. 1981, 59, 2125-2132. 

    Google Scholar 

  13. Beggs D; Vestal ML; Fales HM; Milne GWA: Chemical Ionization Mass Spectrometer Source. Rev. Sci. Inst. 1971 , 42, 1578-1584. 

    CAS  Google Scholar 

  14. Schroder E: Massenspektrometrie – Begriffe und Definitionen; Springer- Verlag: Heidelberg, 1991. 

    Google Scholar 

  15. Ghaderi S; Kulkarni PS; Ledford EB, Jr.; Wilkins CL; Gross ML: Chemical Ionization in Fourier Transform Mass Spectrometry. Anal. Chem. 1981, 53, 428-437. 

    CAS  Google Scholar 

  16. Price P: Standard Definitions of Terms Relating to Mass Spectrometry. A Report From the Committee on Measurements and Standards of the Amercian Society for Mass Spectrometry. J. Am. Chem. Soc. Mass Spectrom. 1991, 2, 336-348. 

    CAS  Google Scholar 

  17. Heck AJR; de Koning LJ; Nibbering NMM: Structure of Protonated Methane. J. Am. Soc. Mass Spectrom. 1991, 2, 454-458. 

    Google Scholar 

  18. Mackay GI; Schiff HI; Bohme KD: A Room-Temperature Study of the Kinetics and Energetics for the Protonation of Ethane. Can. J. Chem. 1981, 59, 1771-1778. 

    CAS  Google Scholar 

  19. Fisher JJ; Koyanagi GK; McMahon TB: The C2H7 + Potential Energy Surface: a Fourier Transform Ion Cyclotron Resonance Investigation of the Reaction of Methyl Cation With Methane. Int. J. Mass Spectrom. 2000, 195/196, 491-505. 

    Google Scholar 

  20. Drabner G; Poppe A; Budzikiewicz H: The Composition of the Methane Plasma. Int. J. Mass Spectrom. Ion Proc. 1990, 97, 1-33. 

    CAS  Google Scholar 

  21. Thompson KC; Crittenden DL; Jordan MJT: CH5 + : Chemistry’s Chameleon Unmasked. J. Am. Chem. Soc. 2005, 127,4954-4958. 

    CAS  Google Scholar 

  22. Heck AJR; de Koning LJ; Nibbering NMM: On the Structure and Unimolecular Chemistry of Protonated Halomethanes. Int. J. Mass Spectrom. Ion Proc. 1991 , 109, 209-225. 

    CAS  Google Scholar 

  23. Herman JA; Harrison AG: Effect of Protonation Exothermicity on the Chemical Ionization Mass Spectra of Some Alkylbenzenes. Org. Mass Spectrom. 1981, 16, 423-427. 

    CAS  Google Scholar 

  24. Munson MSB; Field FH: Reactions of Gaseous Ions. XVI. Effects of Additives on Ionic Reactions in Methane. J. Am. Chem. Soc. 1965, 87, 4242-4247. 

    CAS  Google Scholar 

  25. Kuck D; Petersen A; Fastabend U: Mobile Protons in Large Gaseous Alkylbenzenium Ions. the 21-Proton Equilibration in Protonated Tetrabenzylmethane and Related "Proton Dances". Int. J. Mass Spectrom. 1998, 179/180, 129-146. 

    Google Scholar 

  26. Kuck D: Half a Century of Scrambling in Organic Ions: Complete, Incomplete, Progressive and Composite Atom Interchange. Int. J. Mass Spectrom. 2002 , 213, 101-144. 

    CAS  Google Scholar 

  27. Fales HM; Milne GWA; Axenrod T: Identification of Barbiturates by CI-MS. Anal. Chem. 1970, 42, 1432-1435. 

    CAS  Google Scholar 

  28. Milne GWA; Axenrod T; Fales HM: CI- MS of Complex Molecules. IV. Amino Acids. J. Am. Chem. Soc. 1970, 92, 5170-5175. 

    CAS  Google Scholar 

  29. Fales HM; Milne GWA: CI-MS of Complex Molecules. II. Alkaloids. J. Am. Chem. Soc. 1970, 92, 1590-1597. 

    CAS  Google Scholar 

  30. Herman JA; Harrison AG: Energetics and Structural Effects in the Fragmentation of Protonated Esters in the Gas Phase. Can. J. Chem. 1981, 59, 2133-2145. 

    CAS  Google Scholar 

  31. Milne GWA; Fales HM; Axenrod T: Identification of Dangerous Drugs by Isobutane CI-MS. Anal. Chem. 1970, 42,1815-1820. 

    Google Scholar 

  32. Takeda N; Harada K-I; Suzuki M; Tatematsu A; Kubodera T: Application of Emitter CI-MS to Structural Characterization of Aminoglycoside Antibiotics. Org. Mass Spectrom. 1982 , 17, 247-252. 

    CAS  Google Scholar 

  33. McGuire JM; Munson B: Comparison of Isopentane and Isobutane As Chemical Ionization Reagent Gases. Anal. Chem. 1985, 57, 680-683. 

    CAS  Google Scholar 

  34. McCamish M; Allan AR; Roboz J: Poly(Dimethylsiloxane) As Mass Reference for Accurate Mass Determination in Isobutane CI-MS. Rapid Commun. Mass Spectrom. 1987, 1, 124-125. 

    CAS  Google Scholar 

  35. Maeder H; Gunzelmann KH: Straight- Chain Alkanes As Reference Compounds for Accurate Mass Determination in Isobutane CI-MS. Rapid Commun. Mass Spectrom. 1988, 2, 199-200. 

    CAS  Google Scholar 

  36. Hunt DF; McEwen CN; Upham RA: CI- MS. II. Differentiation of Primary, Secondary, and Tertiary Amines. Tetrahedron Lett. 1971, 47, 4539-4542. 

    Google Scholar 

  37. Busker E; Budzikiewicz H: Studies in CI- MS. 2. Isobutane and Nitric Oxide Spectra of Alkynes. Org. Mass Spectrom. 1979 , 14, 222-226. 

    CAS  Google Scholar 

  38. Keough T; DeStefano AJ: Factors Affecting Reactivity in Ammonia Chemical-Ionization Spectrometry. Org. Mass Spectrom. 1981, 16, 527-533. 

    CAS  Google Scholar 

  39. Hancock RA; Hodges MG: A Simple Kinetic Method for Determining Ion- Source Pressures for Ammonia CIMS. Int. J. Mass Spectrom. Ion Phys. 1983, 46,329-332. 

    CAS  Google Scholar 

  40. Rudewicz P; Munson B: Effect of Ammonia Partial Pressure on the Sensitivities for Oxygenated Compounds in Ammonia CI-MS. Anal. Chem. 1986 , 58, 2903-2907. 

    CAS  Google Scholar 

  41. Lawrence DL: Accurate Mass Measurement of Positive Ions Produced by Ammonia Chemical Ionization. Rapid Commun. Mass Spectrom. 1990, 4, 546-549. 

    CAS  Google Scholar 

  42. Brinded KA; Tiller PR; Lane SJ: Triton X- 100 As a Reference Compound for Ammonia High-Resolution CI-MS and As a Tuning and Calibration Compound for Thermospray. Rapid Commun. Mass Spectrom. 1993, 7, 1059-1061. 

    CAS  Google Scholar 

  43. Wu H-F; Lin Y-P: Determination of the Sensitivity of an External Source Ion Trap Tandem Mass Spectrometer Using Dimethyl Ether Chemical Ionization. J. Mass Spectrom. 1999, 34, 1283-1285. 

    CAS  Google Scholar 

  44. Barry R; Munson B: Selective Reagents in CI-MS: Diisopropyl Ether. Anal. Chem. 1987, 59, 466-471. 

    CAS  Google Scholar 

  45. Allgood C; Lin Y; Ma YC; Munson B: Benzene As a Selective Chemical Ionization Reagent Gas. Org. Mass Spectrom. 1990, 25, 497-502. 

    CAS  Google Scholar 

  46. Srinivas R; Vairamani M; Mathews CK: Gase-Phase Halo Alkylation of C60- Fullerene by Ion-Molecule Reaction Under Chemical Ionization. J. Am. Soc. Mass Spectrom. 1993, 4, 894-897. 

    CAS  Google Scholar 

  47. Fordham PJ; Chamot-Rooke J; Guidice E; Tortajada J; Morizur J-P: Analysis of Alkenes by Copper Ion CI GC/MS and Gas Chromatography/Tandem Mass Spectrometry. J. Mass Spectrom. 1999, 34,1007-1017. 

    CAS  Google Scholar 

  48. Peake DA; Gross ML: Iron(I) Chemical Ionization and Tandem Mass Spectrometry for Locating Double Bonds. Anal. Chem. 1985, 57, 115-120. 

    CAS  Google Scholar 

  49. Budzikiewicz H; Blech S; Schneider B: Studies in Chemical Ionization. XXVI. Investigation of Aliphatic Dienes by Chemical Ionization With Nitric Oxide. Org. Mass Spectrom. 1991, 26, 1057-1060. 

    CAS  Google Scholar 

  50. Schneider B; Budzikiewicz H: A Facile Method for the Localization of a Double Bond in Aliphatic Compounds. Rapid Commun. Mass Spectrom. 1990, 4, 550-551. 

    CAS  Google Scholar 

  51. Lindinger W; Jordan A: Proton-Transfer- Reaction Mass Spectrometry (PTR-MS ): Online Monitoring of Volatile Organic Compounds at Pptv Levels. Chemical Society Reviews 1998, 27, 347-354. 

    CAS  Google Scholar 

  52. Lindinger W; Hansel A; Jordan A: Online Monitoring of Volatile Organic Compounds at Pptv Levels by Means of PTR-MS. Medical Applications, Food Control and Environmental Research. Int. J. Mass Spectrom. Ion Proc. 1998, 173,191-241. 

    CAS  Google Scholar 

  53. Blake RS; Monks PS; Ellis AM: Proton- Transfer Reaction Mass Spectrometry. Chem. Rev. 2009, 109, 861-896. 

    CAS  Google Scholar 

  54. de Gouw J; Warneke C: Measurements of Volatile Organic Compounds in the Earth’s Atmosphere Using PTR-MS. Mass Spectrom. Rev. 2007, 26, 223-257. 

    CAS  Google Scholar 

  55. Fay LB; Yeretzian C; Blank I: Novel Mass Spectrometry Methods in Flavour Analysis. Chimia 2001, 55, 429-434. 

    CAS  Google Scholar 

  56. Karl T; Guenther A; Yokelson RJ; Greenberg J; Potosnak M; Blake DR; Artaxo P: The Tropical Forest and Fire Emissions Experiment: Emission, Chemistry, and Transport of Biogenic Volatile Organic Compounds in the Lower Atmosphere Over Amazonia. Journal of Geophysical Research [Atmosphere] 2007, 112, D18302-1-D18302/17. 

    Google Scholar 

  57. Hsu CS; Qian K: Carbon Disulfide Charge Exchange As a Low-Energy Ionization Technique for Hydrocarbon Characterization. Anal. Chem. 1993, 65, 767-771. 

    CAS  Google Scholar 

  58. Einolf N; Munson B: High-Pressure Charge Exchange Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1972, 9, 141-160. 

    CAS  Google Scholar 

  59. Sieck LW: Determination of Molecular Weight Distribution of Aromatic Components in Petroleum Products by CI- MS With Chlorobenzene As Reagent Gas. Anal. Chem. 1983, 55, 38-41. 

    CAS  Google Scholar 

  60. Allgood C; Ma YC; Munson B: Quantitation Using Benzene in Gas Chromatography/CI-MS. Anal. Chem. 1991, 63, 721-725. 

    Google Scholar 

  61. Subba Rao SC; Fenselau C: Evaluation of Benzene As a Charge Exchange Reagent. Anal. Chem. 1978, 50, 511-515. 

    CAS  Google Scholar 

  62. Li YH; Herman JA; Harrison AG: Charge Exchange Mass Spectra of Some C5H10 Isomers. Canadian Journal of Chemistry 1981, 59, 1753-1759. 

    CAS  Google Scholar 

  63. Abbatt JA; Harrison AG: Low-Energy Mass Spectra of Some Aliphatic Ketones. Org. Mass Spectrom. 1986, 21, 557-563. 

    CAS  Google Scholar 

  64. Herman JA; Li Y-H; Harrison AG: Energy Dependence of the Fragmentation of Some Isomeric C6H12 + . Ions. Org. Mass Spectrom. 1982, 17, 143-150. 

    CAS  Google Scholar 

  65. Chai R; Harrison AG: Location of Double Bonds by CI-MS. Anal. Chem. 1981, 53,34-37. 

    CAS  Google Scholar 

  66. Keough T; Mihelich ED; Eickhoff DJ: Differentiation of Monoepoxide Isomers of Polyunsaturated Fatty Acids and Fatty Acid Esters by Low-Energy Charge Exchange Mass Spectrometry. Anal. Chem. 1984, 56, 1849-1852. 

    CAS  Google Scholar 

  67. Polley CW, Jr.; Munson B: Nitrous Oxide As Reagent Gas for Positive Ion CI-MS. Anal. Chem. 1983, 55, 754-757. 

    CAS  Google Scholar 

  68. Hsu CS; Cooks RG: Charge Exchange Mass Spectrometry at High Energy. Org. Mass Spectrom. 1976, 11, 975-983. 

    CAS  Google Scholar 

  69. Harrison AG; Lin MS: Stereochemical Applications of Mass Spectrometry. 3. Energy Dependence of the Fragmentation of Stereoisomeric Methylcyclohexanols. Org. Mass Spectrom. 1984, 19, 67-71. 

    CAS  Google Scholar 

  70. Roussis S: Exhaustive Determination of Hydrocarbon Compound Type Distributions by High Resolution Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 1031-1051. 

    CAS  Google Scholar 

  71. Hunt DF; Stafford GC, Jr.; Crow FW: Pulsed Positive- and Negative-Ion CI-MS. Anal. Chem. 1976, 48, 2098-2104. 

    CAS  Google Scholar 

  72. von Ardenne M; Steinfelder K; Tummler R: Elektronenanlagerungs-Massen- spektrographie Organischer Substanzen;Springer-Verlag: Heidelberg, 1971 .

    Google Scholar 

  73. Dougherty RC; Weisenberger CR: Negative Ion Mass Spectra of Benzene, Naphthalene, and Anthracene. A New Technique for Obtaining Relatively Intense and Reproducible Negative Ion Mass Spectra. J. Am. Chem. Soc. 1968, 90,6570-6571. 

    CAS  Google Scholar 

  74. Dillard JG: Negative Ion Mass Spectrometry. Chem. Rev. 1973, 73, 589-644. 

    CAS  Google Scholar 

  75. Bouma WJ; Jennings KR: Negative CI- MS of Explosives. Org. Mass Spectrom. 1981, 16, 330-335. 

    Google Scholar 

  76. Budzikiewicz H: Studies in Negative Ion Mass Spectrometry. XI. Negative Chemical Ionization (NCI) of Organic Compounds. Mass Spectrom. Rev. 1986, 5,345-380. 

    CAS  Google Scholar 

  77. Gross JH: Mass Spectrometry, in Encyclopedia of Applied Spectroscopy, Andrews DL, (Hrsg.); Wiley-VCH: Berlin, 2009; Kap. 29, 989-1054. 

    Google Scholar 

  78. Hunt DF; Crow FW: Electron Capture Negative Ion CI-MS. Anal. Chem. 1978 , 50, 1781-1784. 

    CAS  Google Scholar 

  79. Ong VS; Hites RA: Electron Capture Mass Spectrometry of Organic Environmental Contaminants. Mass Spectrom. Rev. 1994 , 13, 259-283. 

    CAS  Google Scholar 

  80. Oehme M: Quantification of Fg-Pg Amounts by Electron Capture Negative Ion Mass Spectrometry – Parameter Optimization and Practical Advice. Fresenius J. Anal. Chem. 1994, 350, 544-554. 

    CAS  Google Scholar 

  81. Bartels MJ: Quantitation of the Tetrachloroethylene Metabolite N-Acetyl- S-(Trichlorovinyl)Cysteine in Rat Urine Via Negative Ion Chemical Ionization Gas Chromatography/Tandem Mass Spectrometry. Biol. Mass Spectrom. 1994 , 23, 689-694. 

    CAS  Google Scholar 

  82. Fowler B: The Determination of Toxaphene in Environmental Samples by Negative Ion Electron Capture High Resolution Mass Spectrometry. Chemosphere 2000, 41, 487-492. 

    CAS  Google Scholar 

  83. Laramée JA; Arbogast BC; Deinzer ML: Electron Capture Negative Ion CI-MS of  1,2,3,4-Tetrachlorodibenzo-p-Dioxin. Anal. Chem. 1986, 58, 2907-2912. 

    Google Scholar 

  84. Budzikiewicz H: Mass Spectrometry of Negative Ions. 3. Mass Spectrometry of Negative Organic Ions. Angew. Chem. 1981, 93, 635-649. 

    CAS  Google Scholar 

  85. Bowie JH: The Formation and Fragmentation of Negative Ions Derived From Organic Molecules. Mass Spectrom. Rev. 1984, 3, 161-207. 

    CAS  Google Scholar 

  86. Stemmler EA; Hites RA: The Fragmentation of Negative Ions Generated by Electron Capture Negative Ion Mass Spectrometry: a Review With New Data. Biomed. Environ. Mass Spectrom. 1988 , 17, 311-328. 

    CAS  Google Scholar 

  87. Buchanan MV; Olerich G: Differentiation of Polycyclic Aromatic Hydrocarbons Using Electron Capture Negative Chemical Ionization. Org. Mass Spectrom. 1984, 19, 486-489. 

    CAS  Google Scholar 

  88. Oehme M: Determination of Isomeric Polycyclic Aromatic Hydrocarbons in Air Particulate Matter by High-Resolution Gas Chromatography/Negative Ion CI-MS. Anal. Chem. 1983, 55, 2290-2295. 

    CAS  Google Scholar 

  89. Giese RW: Detection of DNA Adducts by Electron Capture Mass Spectrometry. Chem. Res. Toxicol. 1997, 10, 255-270. 

    CAS  Google Scholar 

  90. Laramee JA; Mazurkiewicz P; Berkout V; Deinzer ML: Electron Monochromator- Mass Spectrometer Instrument for Negative Ion Analysis of Electronegative Compounds. Mass Spectrom. Rev. 1996 , 15, 15-42. 

    CAS  Google Scholar 

  91. NIST: NIST Chemistry Webbook. http://webbook.nist.gov/ 2002.

    Google Scholar 

  92. Williamson DH; Knighton WB; Grimsrud EP: Effect of Buffer Gas Alterations on the Thermal Electron Attachment and Detachment Reactions of Azulene by Pulsed High Pressure Mass Spectrometry. Int. J. Mass Spectrom. 2000, 195/196,481-489. 

    Google Scholar 

  93. Carette M; Zerega Y; Perrier P; Andre J; March RE: Rydberg Electron-Capture Mass Spectrometry of 1,2,3,4- Tetrachlorodibenzo-p-Dioxin. Eur. Mass Spectrom. 2000, 6, 405-408. 

    CAS  Google Scholar 

  94. Wei J; Liu S; Fedoreyev SA; Vionov VG: A Study of Resonance Electron Capture Ionization on a Quadrupole Tandem Mass Spectrometer. Rapid Commun. Mass Spectrom. 2000, 14, 1689-1694. 

    CAS  Google Scholar 

  95. Zerega Y; Carette M; Perrier P; Andre J: Rydberg Electron Capture Mass   Spectrometry of Organic Pollutants. Organohal. Comp. 2002, 55, 151-154. 

    CAS  Google Scholar 

  96. Yinon J: Mass Spectrometry of Explosives: Nitro Compounds, Nitrate Esters, and Nitramines. Mass Spectrom. Rev. 1982, 1, 257-307. 

    CAS  Google Scholar 

  97. Cappiello A; Famiglini G; Lombardozzi A; Massari A; Vadala GG: Electron Capture Ionization of Explosives With a Microflow Rate Particle Beam Interface. J. Am. Soc. Mass Spectrom. 1996, 7, 753-758. 

    CAS  Google Scholar 

  98. Knighton WB; Grimsrud EP: High- Pressure Electron Capture Mass Spectrometry. Mass Spectrom. Rev. 1995 , 14, 327-343. 

    CAS  Google Scholar 

  99. Aubert C; Rontani J-F: Perfluoroalkyl Ketones: Novel Derivatization Products for the Sensitive Determination of Fatty Acids by Gas Chromatography/Mass Spectrometry in Electron Impact and Negative Chemical Ionization Modes. Rapid Communications in Mass Spectrometry 2000, 14, 960-966. 

    CAS  Google Scholar 

  100. Cotter RJ: Mass Spectrometry of Nonvolatile Compounds by Desorption From Extended Probes. Anal. Chem. 1980 , 52, 1589A-1602A. 

    CAS  Google Scholar 

  101. Kurlansik L; Williams TJ; Strong JM; Anderson LW; Campana JE: Desorption Ionization Mass Spectrometry of Synthetic Porphyrins. Biomed. Mass Spectrom. 1984, 11, 475-481. 

    CAS  Google Scholar 

  102. Helleur RJ; Thibault P: Optimization of Pyrolysis-Desorption CI-MS and Tandem  Mass Spectrometry of Polysaccharides. Can. J. Chem. 1994, 72, 345-351. 

    CAS  Google Scholar 

  103. Vincenti M: The Renaissance of Desorption CI-MS: Characterization of Large Involatile Molecules and Nonpolar Polymers. Int. J. Mass Spectrom. 2001 , 212, 505-518. 

    CAS  Google Scholar 

  104. Beuhler RJ; Flanigan E; Greene LJ; Friedman L: Proton Transfer Mass Spectrometry of Peptides. Rapid Heating Technique for Underivatized Peptides Containing Arginine. J. Am. Chem. Soc. 1974, 96, 3990-3999. 

    CAS  Google Scholar 

  105. Cullen WR; Eigendorf GK; Pergantis SA: Desorption CI-MS of Arsenic Compounds Present in the Marine and Terrestrial Environment. Rapid Commun. Mass Spectrom. 1993, 7, 33-36. 

    CAS  Google Scholar 

  106. Juo CG; Chen SW; Her GR: Mass Spectrometric Analysis of Additives in Polymer Extracts by Desorption Chemical Ionization and Collisional Induced Dissociation With B/E Linked Scanning. Anal. Chim. Acta 1995, 311, 153-164. 

    CAS  Google Scholar 

  107. Chen G; Cooks RG; Jha SK; Green MM: Microstructure of Alkoxy and Alkyl Substituted Isocyanate Copolymers Determined by Desorption CI-MS. Anal. Chim. Acta 1997, 356, 149-154. 

    CAS  Google Scholar 

  108. Pergantis SA; Emond CA; Madilao LL; Eigendorf GK: Accurate Mass Measurements of Positive Ions in the Desorption Chemical Ionization Mode. Org. Mass Spectrom. 1994, 29, 439-444. 

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2013). Chemische Ionisation. In: Massenspektrometrie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-8274-2981-0_7

Download citation

Publish with us

Policies and ethics