Skip to main content

Elektronenstoßionisation in der Praxis

  • Chapter
Book cover Massenspektrometrie
  • 19k Accesses

Zusammenfassung

Die Anwendung der Elektronenstoßionisation (electron ionization, EI) [1] reicht zurück zu den Anfängen der Massenspektrometrie im frühen 20. Jahrhundert. Vorher waren die Funken-Ionen- (spark source, SS), die Glimmentladungs- (glow discharge, GD) sowie die Thermionen- (thermal ionization, TI, auch Thermische Ionisations-MS genannt) in Gebrauch [2]. Diese Methoden spielen heute noch in der massenspektrometrischen Elementanalytik eine Rolle (Kap. 15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Field FH; Franklin JL: Electron Impact Phenomena and the Properties of Gaseous Ions; Academic Press: New York, 1957.

    Google Scholar 

  2. Nier AO: Some Reflections on the Early Days of Mass Spectrometry at the University of Minnesota. Int. J. Mass Spectrom. Ion Proc. 1990, 100, 1-13.

    Article  CAS  Google Scholar 

  3. Schaeffer OA: An Improved Mass Spectrometer Ion Source. Rev. Sci. Instrum. 1954, 25, 660-662.

    Article  CAS  Google Scholar 

  4. Fock W: Design of a Mass Spectrometer Ion Source Based on Computed Ion Trajectories. Int. J. Mass Spectrom. Ion Phys. 1969, 5, 285-291.

    Google Scholar 

  5. Koontz SL; Denton MB: A Very High Yield Electron Impact Ion Source for Analytical Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1981, 37, 227-239.

    Article  CAS  Google Scholar 

  6. Schroder E: Massenspektrometrie - Begriffe und Definitionen; Springer- Verlag: Heidelberg, 1991.

    Google Scholar 

  7. Hogg AM; Payzant JD: Design of a Field Ionization/Field Desorption/-Electron Impact Ion Source and Its Performance on a Modified AEIMS9 Mass Spectrometer. Int. J. Mass Spectrom. Ion Phys. 1978, 27, 291-303.

    Article  CAS  Google Scholar 

  8. Brunnee C: A Combined Field Ionisation- Electron Impact Ion Source for High Molecular Weight Samples of Low Volatility. Z. Naturforsch., B 1967, 22, 121-123.

    CAS  Google Scholar 

  9. Habfast K: Massenspektrometrische Funktionselemente: Ionenquellen, in Massenspektrometrie, Kienitz H, (Hrsg.); Verlag Chemie: Weinheim, 1968; Kap.B 1.2, 43-74.

    Google Scholar 

  10. Bleakney W: A New Method of Positive- Ray Analysis and Its Application to the Measurement of Ionization Potentials in Mercury Vapor. Physical Review 1929, 34, 157-160.

    Article  CAS  Google Scholar 

  11. Nier AO: Mass Spectrometer for Isotope and Gas Analysis. Rev. Sci. Instrum. 1947, 18, 398-411.

    Article  CAS  Google Scholar 

  12. Nier AO: The Development of a High Resolution Mass Spectrometer: a Reminiscence. J. Am. Soc. Mass Spectrom. 1991, 2, 447-452.

    Article  CAS  Google Scholar 

  13. Morrison JD: Ion Focusing, Mass Analysis, and Detection, in Gaseous Ion Chemistry and Mass Spectrometry, Futrell JH, (Hrsg.); John Wiley & Sons: New York, 1986; 107-125.

    Google Scholar 

  14. Dahl DA; Delmore JE; Appelhans AD: SIMION PC/PS2 Electrostatic Lens Design Program. Rev. Sci. Instrum. 1990, 61, 607-609.

    Article  CAS  Google Scholar 

  15. Blaum K; Geppert C; Muller P Nortershauser W; Otten EW; Schmitt A; Trautmann N; Wendt K; Bushaw BA: Properties and Performance of a Quadrupole Mass Filter Used for Resonance Ionization Mass Spectrometry. Int. J. Mass Spectrom. 1998, 181, 67-87.

    Article  CAS  Google Scholar 

  16. Ehlers M; Schmidt S; Lee BJ; Grotemeyer J: Design and Set-Up of an External Ion Source Coupled to a Quadrupole-Ion-Trap Reflectron-Time-of-Flight Hybrid Instrument. Eur. J. Mass Spectrom. 2000, 6, 377-385.

    CAS  Google Scholar 

  17. Dahl DA: SIMION for the Personal Computer in Reflection. Int. J. Mass Spectrom. 2000, 200, 3-25.

    Article  CAS  Google Scholar 

  18. Forbes MW; Sharifi M; Croley T; Lausevic Z; March RE: Simulation of Ion Trajectories in a Quadrupole Ion Trap: a Comparison of Three Simulation Programs. J. Mass Spectrom. 1999, 34, 1219-1239.

    Article  CAS  Google Scholar 

  19. Caldecourt VJ: Heated Sample Inlet System for Mass Spectrometry. Anal. Chem. 1955, 27, 1670.

    Article  CAS  Google Scholar 

  20. Peterson L: Mass Spectrometer All-Glass Heated Inlet. Anal. Chem. 1962, 34, 1850-1851.

    Article  CAS  Google Scholar 

  21. Roussis SG; Cameron AS: Simplified Hydrocarbon Compound Type Analysis Using a Dynamic Batch Inlet System Coupled to a Mass Spectrometer. Energy & Fuels 1997, 11, 879-886.

    Article  CAS  Google Scholar 

  22. Pattillo AD; Young HA: Liquid Sample Introduction System for a Mass Spectrometer. Anal. Chem. 1963, 35, 1768.

    Article  CAS  Google Scholar 

  23. Cameron AE: Electron-Bombardment Ion Source for Mass Spectrometry of Solids. Rev. Sci. Instrum. 1954, 25, 1154-1156.

    Article  CAS  Google Scholar 

  24. Reed RI: Electron Impact and Molecular Dissociation. Part I. Some Steroids and Triterpenoids. J. Chem. Soc. 1958, 3432-3436.

    Google Scholar 

  25. Gohlke RS: Obtaining the Mass Spectra of Non-Volatile or Thermally Unstable Compounds. Chem. Industry 1963, 946-948.

    Google Scholar 

  26. Junk GA; Svec HJ: A Vacuum Lock for the Direct Insertion of Samples into a Mass Spectrometer. Anal. Chem. 1965, 37, 1629-1630.

    Article  CAS  Google Scholar 

  27. Kankare JJ: Simple Temperature Programmer for a Mass Spectrometer Direct Insertion Probe. Anal. Chem. 1974, 46, 966-967.

    Article  CAS  Google Scholar 

  28. Franzen J; Kuper H; Riepe W; Henneberg D: Automatic Ion Current Control of a Direct Inlet System. Int. J. Mass Spectrom. Ion Phys. 1973, 10, 353-357.

    Article  CAS  Google Scholar 

  29. Sawdo RM; Blumer M: Refrigerated Direct Insertion Probe for Mass Spectrometry. Anal. Chem. 1976, 48, 790-791.

    Article  CAS  Google Scholar 

  30. Cotter RJ: Mass Spectrometry of Nonvolatile Compounds by Desorption From Extended Probes. Anal. Chem. 1980, 52, 1589A-1602A.

    Article  CAS  Google Scholar 

  31. Ohashi M; Nakayama N: In-Beam Electron Impact Mass Spectrometry of Aliphatic Alkohols. Org. Mass Spectrom. 1978, 13, 642-645.

    Article  CAS  Google Scholar 

  32. Ohashi M; Tsujimoto K; Funakura S; Harada K; Suzuki M: Detection of Pseudomolecular Ions of Tetra- and Pentasaccharides by in-Beam Electron Ionization Mass Spectrometry. Spectroscopy Int. J. 1983, 2, 260-266.

    CAS  Google Scholar 

  33. Constantin E; Nakatini Y; Ourisson G; Hueber R; Teller G: Spectres De Masse De Phospholipides Et Polypeptides Non Proteges. Une Methode Simple D’Obtention Du Spectre Complet. Tetrahedron Lett. 1980, 21, 4745-4746.

    CAS  Google Scholar 

  34. Traldi P; Vettori U; Dragoni F: Instrument Parameterization for Optimum Use of Commercial Direct Inlet Systems. Org. Mass Spectrom. 1982, 17, 587-592.

    Article  CAS  Google Scholar 

  35. Traldi P: Direct Electron Impact - a New Ionization Technique? Org. Mass Spectrom. 1982, 17, 245-246.

    Article  CAS  Google Scholar 

  36. Udseth HR; Friedman L: Analysis of Styrene Polymers by Mass Spectrometry With Filament-Heated Evaporation. Anal. Chem. 1981, 53, 29-33.

    Article  CAS  Google Scholar 

  37. Daves GD, Jr.: Mass Spectrometry of Involatile and Thermally Unstable Molecules. Accounts of Chemical Research 1979, 12, 359-365.

    Article  CAS  Google Scholar 

  38. Peltier JM; MacLean DB; Szarek WA: Determination of the Glycosidic Linkage in Peracetylated Disaccharides Comprised of D-Glucopyranose Units by Use of Desorption Electron-Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 446-449.

    Article  CAS  Google Scholar 

  39. Kurlansik L; Williams TJ; Strong JM; Anderson LW; Campana JE: Desorption Ionization Mass Spectrometry of Synthetic Porphyrins. Biomed. Mass Spectrom. 1984, 11, 475-481.

    Article  CAS  Google Scholar 

  40. Qian K; Killinger WE; Casey M; Nicol GR: Rapid Polymer Identification by In- Source Direct Pyrolysis Mass Spectrometry and Library Searching Techniques. Anal. Chem. 1996, 68, 10191027.

    Article  CAS  Google Scholar 

  41. Meuzelaar HLC; Haverkamp J; Hileman FD: Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials; Elsevier: Amsterdam, 1982.

    Google Scholar 

  42. Guillo C; Lipp M; Radovic B; Reniero F; Schmidt M; Anklam E: Use of Pyrolysis- Mass Spectrometry in Food Analysis: Applications in the Food Analysis Laboratory of the European Commissions’ Joint Research Center. J. Anal. Appl. Pyrolysis 1999, 49, 329-335.

    Article  Google Scholar 

  43. Schulten H-R; Leinweber P: Characterization of Humic and Soil Particles by Analytical Pyrolysis and Computer Modeling. J. Anal. Appl. Pyrolysis 1996, 38, 1-53.

    Article  CAS  Google Scholar 

  44. Basile F; Beverly MB; Voorhees KJ: Pathogenic Bacteria: Their Detection and Differentiation by Rapid Lipid Profiling With Pyrolysis Mass Spectrometry. Trends Anal. Chem. 1998, 17, 95-109.

    Article  CAS  Google Scholar 

  45. Badawy SM: Identification of Some Polymeric Materials by Low-Temperature Pyrolysis Mass Spectrometry. Eur. J. Mass Spectrom. 2004, 10, 613-617.

    Article  CAS  Google Scholar 

  46. Message GM: Practical Aspects of Gas Chromatography/Mass Spectrometry; John Wiley & Sons: New York, 1984.

    Google Scholar 

  47. Hubschmann H-J: Handbuch Der GC-MS - Grundlagen und Anwendungen; Verlag Chemie: Weinheim, 1996.

    Book  Google Scholar 

  48. Budde WL: Analytical Mass Spectrometry; ACS and Oxford University Press: Washington, D.C. and Oxford, 2001.

    Google Scholar 

  49. Gohlke RS; McLafferty FW: Early Gas Chromatography/Mass Spectrometry. Journal of the American Society for Mass Spectrometry 1993, 4, 367-371.

    Article  CAS  Google Scholar 

  50. McFadden WH; Schwartz HL; Evans S: Direct Analysis of Liquid Chromato- graphic Effluents. Journal of Chromatography 1976, 122, 389-396.

    Article  CAS  Google Scholar 

  51. Karger BL; Kirby DP; Vouros P; Foltz RL; Hidy B: On-Line Reversed Phase Liquid Chromatography-Mass Spectro- metry. Anal. Chem. 1979, 51, 2324-2328.3.

    Article  CAS  Google Scholar 

  52. Millington DS; Yorke DA; Burns P: A New Liquid Chromatography-Mass Spectrometry Interface. Advances in Mass Spectrometry 1980, 8B, 1819-1825.

    CAS  Google Scholar 

  53. Games DE; Hirter P; Kuhnz W; Lewis E; Weerasinghe NCA; Westwood SA: Studies of Combined Liquid Chromatography-Mass Spectrometry With a Moving-Belt Interface. Journal of Chromatography 1981, 203, 131-138.

    Article  CAS  Google Scholar 

  54. Liang Z; Hsu CS: Molecular Speciation of Saturates by Online Liquid Chromato- graphy-Field Ionization Mass Spectrometry. Energy Fuels 1998, 12, 637-643.

    Article  CAS  Google Scholar 

  55. Willoughby RC; Browner RF: Monodisperse Aerosol Generation Interface for Combining Liquid Chromato- graphy With Mass Spectroscopy. Anal. Chem. 1984, 56, 2625-2631.

    Article  CAS  Google Scholar 

  56. Winkler PC; Perkins DD; Williams DK; Browner RF: Performance of an Improved Monodisperse Aerosol Generation Interface for Liquid Chromatography/- Mass Spectrometry. Anal. Chem. 1988, 60, 489-493.

    Article  CAS  Google Scholar 

  57. Brauers F; von Bunau G: Mass Spectrometry of Solutions: a New Simple Interface for the Direct Introduction of Liquid Samples. Int. J. Mass Spectrom. Ion Proc. 1990, 99, 249-262.

    Article  CAS  Google Scholar 

  58. Cappiello A: Is Particle Beam an Up-to- Date LC-MS Interface? State of the Art and Perspectives. Mass Spectrom. Rev. 1997, 15, 283-296.

    Article  Google Scholar 

  59. Cappiello A; Famiglini G: Capillary-Scale Particle-Beam Liquid Chromatography/- Mass Spectrometry Interface: Can Electron Ionization Sustain the Competition? J. Am. Chem. Soc. Mass Spectrom. 1998, 9, 993-1001.

    Article  CAS  Google Scholar 

  60. Cappiello A; Famiglini G; Mangani F; Palma P: A Simple Approach for Coupling Liquid Chromatography and Electron Ionization Mass Spectrometry. J. Am. Chem. Soc. Mass Spectrom. 2002, 13, 265-273.

    Article  CAS  Google Scholar 

  61. Cappiello A; Famiglini G; Palma P; Siviero A: Liquid Chromatography- Electron Ionization Mass Spectrometry: Fields of Application and Evaluation of the Performance of a Direct-EI Interface. Mass Spectrom. Rev. 2005, 24, 978-989.

    Article  CAS  Google Scholar 

  62. Ludanyi K; Dallos A; Kuhn Z; Vekey D: Mass Spectrometry of Very Large Saturated Hydrocarbons. J. Mass Spectrom. 1999, 34, 264-267.

    Article  CAS  Google Scholar 

  63. Remberg G; Remberg E; Spiteller- Friedmann M; Spiteller G: Massen- spektren schwach angeregter Molekule. 4. Mitteilung. Org. Mass Spectrom. 1968, 1, 87-113.

    Article  CAS  Google Scholar 

  64. Bowen RD; Maccoll A: Low-Energy, Low-Temperature Mass Spectra. I. Selected Derivatives of Octane. Org. Mass Spectrom. 1983, 18, 576-581.

    Article  CAS  Google Scholar 

  65. Brophy JJ; Maccoll A: Low-Energy, Low- Temperature Mass Spectra. 9. The Linear Undecanols. Org. Mass Spectrom. 1988, 23, 659-662.

    Article  CAS  Google Scholar 

  66. Melaku A; Maccoll A; Bowen RD: Low- Energy, Low-Temperature Mass Spectra. Part 17: Selected Aliphatic Amides. Eur. Mass Spectrom. 1997, 3, 197-208.

    Article  Google Scholar 

  67. Handbook of Derivates for Chromatography; Blau G; King GS, (Hrsgs.); Heyden & Son: London, 1977.

    Google Scholar 

  68. Poole CF: Recent Advances in the Silylation of Organic Compounds for Gas Chromatography, in Handbook of derivates for chromatography, Blau G; King GS, (Hrsgs.); Heyden & Son: London, 1977; Kap.4, 152-200.

    Google Scholar 

  69. Svendsen JS; Sydnes LK; Whist JE: Mass Spectrometric Study of Dimethyl Esters of Trimethylsilyl Ether Derivatives of Some 3-Hydroxy Dicarboxylic Acids. Org. Mass Spectrom. 1987, 22, 421-429.

    Article  CAS  Google Scholar 

  70. Svendsen JS; Whist JE; Sydnes LK: A Mass Spectrometric Study of the Dimethyl Ester Trimethylsilyl Enol Ether Derivatives of Some 3-Oxodicarboxylic Acids. Org. Mass Spectrom. 1987, 22, 486-492.

    Article  CAS  Google Scholar 

  71. Scribe P; Guezennec J; Dagaut J; Pepe C; Saliot A: Identification of the Position and the Stereochemistry of the Double Bond in Monounsaturated Fatty Acid Methyl Esters by Gas Chromatography/Mass Spectrometry of Dimethyl Disulfide Derivatives. Anal. Chem. 1988, 60, 928-931.

    Article  Google Scholar 

  72. Pepe C; Sayer H; Dagaut J; Couffignal R: Determination of Double Bond Positions in Triunsaturated Compounds by Means of Gas Chromatography/Mass Spectrometry of Dimethyl Disulfide Derivatives. Rapid Commun. Mass Spectrom. 1997, 11, 919-921.

    Google Scholar 

  73. Abrahamsson S; Stenhagen E; McLafferty FW: Atlas of Mass Spectral Data; John Wiley & Sons: New York, 1969; Bd. 1-3.

    Google Scholar 

  74. Eight Peak Index of Mass Spectra; 3rd Ausg.; Royal Society of Chemistry: London, 1983; Bd. 1-3.

    Google Scholar 

  75. McLafferty FW; Stauffer DB: The Wiley/NBS Registry of Mass Spectral Data; 2. Aufl.; Wiley-Interscience: New York, 1989; Bd. 1-7.

    Google Scholar 

  76. McLafferty FW; Gohlke RS: Mass- Spectrometric Analysis: Spectral-Data File Utilizing Machine Filing and Manual Searching. Anal. Chem. 1959, 31, 1160-1163.

    Article  CAS  Google Scholar 

  77. Stein SE; Ausloos P; Lias SG: Comparative Evaluations of Mass Spectral Databases. J. Am. Soc. Mass Spectrom. 1991, 2, 441-443.

    Article  CAS  Google Scholar 

  78. McLafferty FW; Stauffer DB; Twiss- Brooks AB; Loh SY: An Enlarged Data Base of Electron-Ionization Mass Spectra. J. Am. Soc. Mass Spectrom. 1991, 2, 432-437.

    Article  CAS  Google Scholar 

  79. McLafferty FW; Stauffer DB; Loh SY: Comparative Evaluations of Mass Spectral Data Bases. J. Am. Soc. Mass Spectrom. 1991, 2, 438-440.

    Article  CAS  Google Scholar 

  80. Henneberg D; Weimann B; Zalfen U: Computer-Aided Interpretation of Mass Spectra Using Databases With Spectra and Structures. I. Structure Searches. Org. Mass Spectrom. 1993, 28, 198-206.

    Article  CAS  Google Scholar 

  81. Zhu D; She J; Hong Q; Liu R; Lu P; Wang L: ASES/MS: an Automatic Structure Elucidation System for Organic Compounds Using Mass Spectrometric Data. Analyst 1988, 113, 1261-1265.

    Article  CAS  Google Scholar 

  82. Kwiatkowski J; Riepe W: A Combined Forward-Reverse Library Search System for the Identification of Low-Resolution Mass Spectra. Analytica Chimica Acta 1979, 112, 219-231.

    Article  CAS  Google Scholar 

  83. Stein SE; Heller DN: On the Risk of False Positive Identification Using Multiple Ion Monitoring in Qualitative Mass Spectrometry: Large-Scale Inter- comparisons With a Comprehensive Mass Spectral Library. J. Am. Chem. Soc. Mass Spectrom. 2006, 17, 823-835.

    Article  CAS  Google Scholar 

  84. Milman BL: Towards a Full Reference Library of MSn Spectra. Testing of a Library Containing 3126 MS2 Spectra of 1743 Compounds. Rapid Commun. Mass Spectrom. 2005, 19, 2833-2839.

    Article  CAS  Google Scholar 

  85. Stein S; Scott DR: Optimization and Testing of Mass Spectral Library Search Algorithms for Compound Identification. J. Am. Soc. Mass Spectrom. 1994, 5, 859866.

    Article  CAS  Google Scholar 

  86. Stein SE: Estimating Probabilities of Correct Identification From Results of Mass Spectral Library Searches. J. Am. Soc. Mass Spectrom. 1994, 5, 316-323.

    Article  CAS  Google Scholar 

  87. Lebedev KS; Cabrol-Bass D: New Computer Aided Methods for Revealing Structural Features of Unknown Compounds Using Low Resolution Mass Spectra. J. Chem. Inf. Comput. Sci. 1998, 38, 410-419.

    Article  CAS  Google Scholar 

  88. Halket JM; Waterman D; Przyborowska AM; Patel RKP; Fraser PD; Bramley PM: Chemical Derivatization and Mass Spectral Libraries in Metabolic Profiling by GC/MS and LC/MS/MS. Journal of Experimental Botany 2005, 56, 219-243.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2013). Elektronenstoßionisation in der Praxis. In: Massenspektrometrie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-8274-2981-0_5

Download citation

Publish with us

Policies and ethics