Skip to main content

Massenspektrometer

  • Chapter
Massenspektrometrie
  • 21k Accesses

Zusammenfassung

„Ein modernes Massenspektrometer setzt sich aus Elementen zusammen, die jedes für sich in Bezug auf Elektronik, Vakuumsystem, Magnetdesign, mechanische Präzision sowie computergestützte Datenerfassung und Datenverarbeitung den State-of-the-Art verkörpern” [1]. Für Massenspektrometer hat diese Feststellung aus den 1990er Jahren bis heute ihre Gültigkeit bewahrt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ligon WV, Jr.: Molecular Analysis by Mass Spectrometry. Science 1979 , 205, 151-159.

    Article  CAS  Google Scholar 

  2. Brunnée C: The Ideal Mass Analyzer: Fact or Fiction? Int. J. Mass Spectrom. Ion Proc. 1987 , 76, 125-237.

    Google Scholar 

  3. Beynon JH: Instruments, in Mass Spectrometry and its Applications to Organic Chemistry, Elsevier: Amsterdam, 1960 ; 4-27.

    Google Scholar 

  4. Habfast K; Aulinger F: Massenspektrometrische Apparate, in Massenspektrometrie, Kienitz H, (Hrsg.); Verlag Chemie: Weinheim, 1968 ; 29-124.

    Google Scholar 

  5. Aulinger F: Massenspektroskopische Gerate, in Massenspektrometrie, Kienitz H, (Hrsg.); Verlag Chemie: Weinheim, 1968 ; 125-154.

    Google Scholar 

  6. Brunnée C: New Instrumentation in Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1982 , 45, 51-86.

    Google Scholar 

  7. Brunnée C: 50 Years of MAT in Bremen. Rapid Commun. Mass Spectrom. 1997 , 11, 694-707.

    Article  Google Scholar 

  8. Chapman JR; Errock GA; Race JA: Science and Technology in Manchester: the Nuture of Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997 , 11, 1575-1586.

    Article  CAS  Google Scholar 

  9. McLuckey SA: Intrumentation for Mass Spectrometry: 1997, 14. Aufl.; Karjalainen EJ; Hesso AE; Jalonen JE; Karjalainen UP, (Hrsgs.); Elsevier: Amsterdam, 1998;153-196.

    Google Scholar 

  10. Badman ER; Cooks RG: Miniature Mass Analyzers. J. Mass Spectrom. 2000 , 35, 659-671.

    Article  CAS  Google Scholar 

  11. Baykut G; Franzen J: Mobile Mass Spectrometry; a Decade of Field Applications. Trends Anal. Chem. 1994 , 13, 267-275.

    Article  CAS  Google Scholar 

  12. Prieto MC; Kovtoun VV; Cotter RJ: Miniaturized Linear TOF Mass Spectrometer With Pulsed Extraction. J. Mass Spectrom. 2002 , 37, 1158-1162.

    Article  CAS  Google Scholar 

  13. Fenselau C; Caprioli R: Mass Spectrometry in the Exploration of Mars. J. Mass Spectrom. 2003 , 38, 1-10.

    Article  CAS  Google Scholar 

  14. Arkin CR; Griffin TP; Ottens AK; Diaz JA; Follistein DW; Adams FW; Helms WR: Evaluation of Small Mass Spectrometer Systems for Permanent Gas Analysis. J. Am. Soc. Mass Spectrom. 2002 , 13, 1004-1012.

    Article  CAS  Google Scholar 

  15. Hu Q; Noll RJ; Li H; Makarov A; Hardman M; Cooks RG: The Orbitrap: A New Mass Spectrometer. J. Mass Spectrom. 2005 , 40, 430-443.

    Article  CAS  Google Scholar 

  16. Wiley WC; McLaren IH: TOF Mass Spectrometer With Improved Resolution. Rev. Sci. Instrum. 1955 , 26, 1150-1157.

    Article  CAS  Google Scholar 

  17. Stephens WE: A Pulsed Mass Spectrometer With Time Dispersion. Phys. Rev. 1946 , 69, 691.

    CAS  Google Scholar 

  18. Cameron AE; Eggers DF: An Ion "Velocitron". Rev. Sci. Instrum. 1948 , 19, 605-607.

    Article  CAS  Google Scholar 

  19. Wolff MM; Stephens WE: A Pulsed Mass Spectrometer With Time Dispersion. Rev. Sci. Instrum. 1953 , 24, 616-617.

    Article  CAS  Google Scholar 

  20. Wiley WC; McLaren IH: Reprint of: TOF Mass Spectrometer With Improved Resolution. J. Mass Spectrom. 1997 , 32, 4-11.

    CAS  Google Scholar 

  21. Harrington DB: The TOF Mass Spectrometer, in Advances in Mass Spectrometry, Waldron JD, (Hrsg.); Pergamon Press: Oxford, 1959 ; 249-265.

    Google Scholar 

  22. Gohlke RS; McLafferty FW: Early Gas Chromatography/Mass Spectrometry. Journal of the American Society for Mass Spectrometry 1993 , 4, 367-371.

    Article  CAS  Google Scholar 

  23. Guilhaus M: The Return of TOF to Analytical Mass Spectrometry. Adv. Mass Spectrom. 1995 , 13, 213-226.

    CAS  Google Scholar 

  24. Guilhaus M; Mlynski V; Selby D: Perfect Timing: TOF Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997 , 11, 951-962.

    Article  CAS  Google Scholar 

  25. Karas M; Hillenkamp F: Laser Desorption Ionization of Proteins With Molecular Masses Exceeding 10000 Daltons. Anal. Chem. 1988 , 60, 2299-2301.

    Article  CAS  Google Scholar 

  26. Weickhardt C; Moritz F; Grotemeyer J: TOF-MS: State-of-the-Art in Chemical Analysis and Molecular Science. Mass Spectrom. Rev. 1997 , 15, 139-162.

    Article  Google Scholar 

  27. Cotter RJ: TOF Mass Spectrometry: Instrumentation and Applications in Biological Research; American Chemical Society: Washington, DC, 1997 .

    Google Scholar 

  28. Enke CG: The Unique Capabilities of TOF Mass Analyzers. Adv. Mass Spectrom. 1998 , 14, 197-219.

    Google Scholar 

  29. Fuerstenau SD; Benner WH: Molecular Weight Determination of Megadalton DNA Electrospray Ions Using Charge Detection TOF Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995 , 9, 1528-1538.

    Article  CAS  Google Scholar 

  30. Fuerstenau SD; Benner WH; Thomas JJ; Brugidou C; Bothner B; Suizdak G: Mass Spectrometry of an Intact Virus. Angew. Chem., Int. Ed. 2001 , 40, 541-544.

    Article  CAS  Google Scholar 

  31. Vestal ML: Modern MALDI TOF Mass Spectrometry. J. Mass Spectrom. 2009 , 44, 303-317.

    Article  CAS  Google Scholar 

  32. Guilhaus M: Principles and Instrumentation in TOF-MS. Physical and Instrumental Concepts. J. Mass Spectrom. 1995 , 30, 1519-1532.

    Article  CAS  Google Scholar 

  33. Ioanoviciu D: Ion-Optical Solutions in TOF Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995 , 9, 985-997.

    Article  CAS  Google Scholar 

  34. Cotter RJ: TOF Mass Spectrometry for the Analysis of Biological Molecules. Anal. Chem. 1992 , 64, 1027A-1039A.

    CAS  Google Scholar 

  35. Takach EJ; Hines WM; Patterson DH; Juhasz P; Falick AM; Vestal ML; Martin SA: Accurate Mass Measurements Using MALDI-TOF With Delayed Extraction. Journal of Protein Chemistry 1997 , 16, 363-369.

    Article  CAS  Google Scholar 

  36. Vestal M; Juhasz P: Resolution and Mass Accuracy in Matrix-Assisted Laser Desorption Ionization-TOF. J. Am. Soc. Mass Spectrom. 1998 , 9, 892-911.

    Article  CAS  Google Scholar 

  37. Vestal M; Hayden K: High Performance MALDI-TOF Mass Spectrometry for Proteomics. Int. J. Mass Spectrom. 2007 , 268, 83-92.

    Article  CAS  Google Scholar 

  38. Beavis RC; Chait BT: Factors Affecting the Ultraviolet Laser Desorption of Proteins. Rapid Commun. Mass Spectrom. 1989 , 3, 233-237.

    CAS  Google Scholar 

  39. Mamyrin BA: Laser Assisted Reflectron TOF Mass Spectrometry. Int. J. Mass Spectrom. Ion Proc. 1994 , 131, 1-19.

    Article  CAS  Google Scholar 

  40. Schuerch S; Schaer M; Boernsen KO; Schlunegger UP: Enhanced Mass Resolution in MALDI Linear TOF-MS. Biol. Mass Spectrom. 1994 , 23, 695-700.

    Article  CAS  Google Scholar 

  41. Brown RS; Lennon JJ: Mass Resolution Improvement by Incorporation of Pulsed Ion Extraction in a Matrix-Assisted Laser Desorption/Ionization Linear TOF Mass Spectrometer. Anal. Chem. 1995 , 67, 1998-2003.

    Article  CAS  Google Scholar 

  42. Colby SM; King TB; Reilly JP: Improving the Resolution of Matrix-Assisted Laser Desorption/Ionization TOF Mass Spectrometry by Exploiting the Correlation Between Ion Position and Velocity. Rapid Commun. Mass Spectrom. 1994 , 8, 865-868.

    Article  CAS  Google Scholar 

  43. Whittal RM; Li L: High-Resolution Matrix-Assisted Laser Desorption- Ionization in a Linear TOF Mass Spectrometer. Anal. Chem. 1995 , 67, 1950-1954.

    Article  CAS  Google Scholar 

  44. Vestal ML; Juhasz P; Martin SA: Delayed Extraction Matrix-Assisted Laser Desorption TOF Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995 , 9, 1044-1050.

    Article  CAS  Google Scholar 

  45. Weaver PJ; Laures AMF; Wolff JC: Investigation of the Advanced Functionalities of a Hybrid Quadrupole Orthogonal Acceleration TOF Mass Spectrometer. Rapid Commun. Mass Spectrom. 2007 , 21, 2415-2421.

    Article  CAS  Google Scholar 

  46. Dawson JHJ; Guilhaus M: Orthogonal- Acceleration TOF Mass Spectrometer. Rapid Commun. Mass Spectrom. 1989 , 3, 155-159.

    CAS  Google Scholar 

  47. Mirgorodskaya OA; Shevchenko AA; Chernushevich IV; Dodonov AF; Miroshnikov AI: Electrospray-Ionization TOF Mass Spectrometry in Protein Chemistry. Anal. Chem. 1994 , 66, 99-107.

    Article  CAS  Google Scholar 

  48. Coles J; Guilhaus M: Orthogonal Acceleration - a New Direction for TOF Mass Spectrometry: Fast, Sensitive Mass Analysis for Continuous Ion Sources. Trends Anal. Chem. 1993 , 12, 203-213.

    Article  CAS  Google Scholar 

  49. Guilhaus M; Selby D; Mlynski V: Orthogonal Acceleration TOF Mass Spectrometry. Mass Spectrom. Rev. 2000 , 19, 65-107.

    Article  CAS  Google Scholar 

  50. Selby DS; Mlynski V; Guilhaus M: A 20 KV Orthogonal Acceleration TOF Mass Spectrometer for Matrix-Assisted Laser Desorption/Ionization. Int. J. Mass Spectrom. 2001 , 210/211, 89-100.

    Article  CAS  Google Scholar 

  51. Selditz U; Nilsson S; Barnidge D; Markides KE: ESI/TOF-MS Detection for Microseparation Techniques. Chimia 1999 , 53, 506-510.

    CAS  Google Scholar 

  52. Charles L: Influence of Internal Standard Charge State on the Accuracy of Mass Measurements in Orthogonal Acceleration TOF Mass Spectrometers. Rapid Commun. Mass Spectrom. 2008 , 22, 151-155.

    Article  CAS  Google Scholar 

  53. Guo C; Huang Z; Gao W; Nian H; Chen H; Dong J; Shen G; Fu J; Zhou Z: A Homemade High-Resolution Orthogonal- Injection TOF Mass Spectrometer With a Heated Capillary Inlet. Rev. Sci. Instrum. 2008 , 79, 013109-1-013109/8.

    Article  CAS  Google Scholar 

  54. Prazen BJ; Bruckner CA; Synovec RE; Kowalski BR: Enhanced Chemical Analysis Using Parallel Column Gas Chromatography With Single-Detector TOF Mass Spectrometry and Chemometric Analysis. Analytical Chemistry 1999 , 71, 1093-1099.

    Article  CAS  Google Scholar 

  55. Hirsch R; Ternes TA; Bobeldijk I; Weck RA: Determination of Environmentally Relevant Compounds Using Fast GC/TOF-MS. Chimia 2001 , 55, 19-22.

    CAS  Google Scholar 

  56. Hsu CS; Green M: Fragment-Free Accurate Mass Measurement of Complex Mixture Components by Gas Chromatography/Field Ionization-oaTOF- MS: an Unprecedented Capability for Mixture Analysis. Rapid Commun. Mass Spectrom. 2001 , 15, 236-239.

    Article  CAS  Google Scholar 

  57. Chernushevich IV: Duty Cycle Improvement for a Quadrupole-TOF Mass Spectrometer and Its Use for Precursor Ion Scans. Eur. J. Mass Spectrom. 2000 , 6, 471-479.

    Article  CAS  Google Scholar 

  58. Brock A; Rodriguez N; Zare RN: Hadamard Transform TOF Mass Spectrometry. Anal. Chem. 1998 , 70, 3735-3741.

    Article  CAS  Google Scholar 

  59. Zare RN; Fernandez FM; Kimmel JR: Hadamard Transform TOF Mass Spectrometry: More Signal, More of the Time. Angew. Chem., Int. Ed. 2003 , 42, 30-35.

    Article  CAS  Google Scholar 

  60. Trapp O; Kimmel JR; Yoon OK; Zuleta IA; Fernandez FM; Zare RN: Continuous Two-Channel TOF Mass Spectrometric Detection of Electrosprayed Ions. Angew. Chem., Int. Ed. 2004 , 43, 6541-6544.

    Article  CAS  Google Scholar 

  61. Brenton AG; Krastev T; Rousell DJ; Kennedy MA; Craze AS; Williams CM: Improvement of the Duty Cycle of an oaTOF Mass Spectrometer Using Ion Gates. Rapid Commun. Mass Spectrom. 2007 , 21, 3093-3102.

    Article  CAS  Google Scholar 

  62. Colombo M; Sirtori FR; Rizzo V: A Fully Automated Method for Accurate Mass Determination Using High-Performance Liquid Chromatography With a Quadrupole/Orthogonal Acceleration TOF Mass Spectrometer. Rapid Commun. Mass Spectrom. 2004 , 18, 511-517.

    Article  CAS  Google Scholar 

  63. Dempster AJ: A New Method of Positive Ray Analysis. Phys. Rev. 1918 , 11, 316-325.

    Article  CAS  Google Scholar 

  64. Nier AO: Some Reflections on the Early Days of Mass Spectrometry at the University of Minnesota. Int. J. Mass Spectrom. IonProc. 1990 , 100, 1-13.

    Article  CAS  Google Scholar 

  65. Nier AO: The Development of a High Resolution Mass Spectrometer: a Reminiscence. J. Am. Soc. Mass Spectrom. 1991 , 2, 447-452.

    Article  CAS  Google Scholar 

  66. Nier AO: Some Reminiscences of Mass Spectrometry and the Manhattan Project. J. Chem. Educ. 1989 , 66, 385-388.

    Article  CAS  Google Scholar 

  67. Duckworth HE; Barber RC; Venkatasubramanian VS: Mass Spectroscopy; 2nd Ausg.; Cambridge University Press: Cambridge, 1986 .

    Google Scholar 

  68. Cooks RG; Beynon JH; Caprioli RM: Instrumentation, in Metastable Ions, Elsevier: Amsterdam, 1973 ; 5-18.

    Google Scholar 

  69. Morrison JD: Ion Focusing, Mass Analysis, and Detection, in Gaseous Ion Chemistry and Mass Spectrometry, Futrell JH, (Hrsg.); John Wiley & Sons: New York, 1986 ; 107-125.

    Google Scholar 

  70. Mattauch J; Herzog R: Uber Einen Neuen Massenspektrographen. Z. Phys. 1934 , 89, 786-795.

    Article  CAS  Google Scholar 

  71. Bainbridge KT; Jordan EB: Mass- Spectrum Analysis. 1. The Mass Spectrograph. 2. The Existence of Isobars of Adjacent Elements. Phys. Rev. 1936 , 50, 282-296.

    Article  CAS  Google Scholar 

  72. Johnson EG; Nier AO: Angular Aberrations in Sector Shaped Electromagnetic Lenses for Focusing Beams of Charged Particles. Phys. Rev. 1953 , 91, 10-17.

    Article  CAS  Google Scholar 

  73. Todd JFJ: Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. International Journal of Mass Spectrometry and Ion Processes 1995 , 142, 211-240.

    Article  CAS  Google Scholar 

  74. Morgan RP; Beynon JH; Bateman RH; Green BN: The MM-ZAB-2F Double- Focussing Mass Spectrometer and MIKE Spectrometer. Int. J. Mass Spectrom. Ion Phys. 1978 , 28, 171-191.

    Article  CAS  Google Scholar 

  75. Hintenberger H; Konig LA: Uber Massenspektrometer Mit Vollstandiger Doppelfokussierung zweiter Ordnung. Z. Naturforsch. 1957 , 12A, 443.

    CAS  Google Scholar 

  76. Guilhaus M; Boyd RK; Brenton AG; Beynon JH: Advantages of a Second Electric Sector on a Double-Focusing Mass Spectrometer of Reversed Configuration. Int. J. Mass Spectrom. Ion Proc. 1985 , 67, 209-227.

    Article  CAS  Google Scholar 

  77. Bill JC; Green BN; Lewis IAS: A High Field Magnet With Fast Scanning Capabilities. Int. J. Mass Spectrom. Ion Phys. 1983 , 46, 147-150.

    Article  CAS  Google Scholar 

  78. Matsuda H: High-Resolution High- Transmission Mass Spectrometer. Int. J. Mass Spectrom. Ion Proc. 1985 , 66, 209-215.

    Article  CAS  Google Scholar 

  79. Matsuda H: Double-Focusing Mass Spectrometers of Short Path Length. Int. J. Mass Spectrom. Ion Proc. 1989 , 93, 315-321.

    Article  CAS  Google Scholar 

  80. Paul W: Elektromagnetische Kafige Fur Neutrale Und Geladene Teilchen (Nobel-Vortrag). Angew. Chem. 1990 , 102, 780-789.

    Article  CAS  Google Scholar 

  81. Paul W: Electromagnetic Traps for Charged and Neutral Particles, in Nobel Prize Lectures in Physics 1981-1990, World Scientific Publishing: Singapore, 1993 ; 601-622.

    Google Scholar 

  82. Paul W; Steinwedel H: A New Mass Spectrometer Without Magnetic Field. Z. Naturforsch. 1953 , 8A, 448-450.

    CAS  Google Scholar 

  83. Paul W; Raether M: Das Elektrische Massenfilter. Z. Phys. 1955 , 140, 262-273.

    Article  Google Scholar 

  84. Lawson G; Todd JFJ: Radio-Frequency Quadrupole Mass Spectrometers. Chem. Brit. 1972 , 8, 373-380.

    CAS  Google Scholar 

  85. Dawson PH: Quadrupole Mass Spectrometry and Its Applications; Elsevier: New York, 1976 .

    Google Scholar 

  86. Dawson PH: Quadrupole Mass Analyzers: Performance, Design and Some Recent Applications. Mass Spectrom. Rev. 1986 , 5, 1-37.

    Article  CAS  Google Scholar 

  87. Douglas DJ: Linear Quadrupoles in Mass Spectrometry. Mass Spectrom. Rev. 2009 , 28, 937-960.

    Article  CAS  Google Scholar 

  88. Blaum K; Geppert C; Müller P; Nörtershauser W; Otten EW; Schmitt A Trautmann N; Wendt K; Bushaw BA:Properties and Performance of a Quadrupole Mass Filter Used for Resonance Ionization Mass Spectrometry. Int. J. Mass Spectrom. 1998 , 181, 67-87.

    Article  CAS  Google Scholar 

  89. Amad MH; Houk RS: High-Resolution Mass Spectrometry With a Multiple Pass Quadrupole Mass Analyzer. Anal. Chem. 1998 , 70, 4885-4889.

    Article  CAS  Google Scholar 

  90. Liyu Y; Amad MH; Winnik WM; Schoen AE; Schweingruber H; Mylchreest I; Rudewicz PJ: Investigation of an Enhanced Resolution Triple Quadrupole Mass Spectrometer for High-Throughput Liquid Chromatography/Tandem Mass Spectrometry Assays. Rapid Commun. Mass Spectrom. 2002 , 16, 2060-2066.

    Article  CAS  Google Scholar 

  91. Denison DR: Operating Parameters of a Quadrupole in a Grounded Cylindrical Housing. J. Vac. Sci. Technol. 1971 , 8, 266-269.

    Article  CAS  Google Scholar 

  92. Dawson PH; Whetten NR: Nonlinear Resonances in Quadrupole Mass Spectrometers Due to Imperfect Fields. II. Quadrupole Mass Filter and the Monopole Mass Spectrometer. Int. J. Mass Spectrom. Ion Phys. 1969 , 3, 1-12.

    Article  CAS  Google Scholar 

  93. Brubaker WM: Comparison of Quadrupole Mass Spectrometers With Round and Hyperbolic Rods. J. Vac. Sci. Technol. 1967 , 4, 326.

    Google Scholar 

  94. Gibson JR; Taylor S: Prediction of Quadrupole Mass Filter Performance for Hyperbolic and Circular Cross Section Electrodes. Rapid Commun. Mass Spectrom. 2000 , 14, 1669-1673.

    Article  CAS  Google Scholar 

  95. Chen W; Collings BA; Douglas DJ: High- Resolution Mass Spectrometry With a Quadrupole Operated in the Fourth Stability Region. Anal. Chem. 2000 , 72, 540-545.

    Article  CAS  Google Scholar 

  96. Douglas DJ; Frank AJ; Mao D: Linear Ion Traps in Mass Spectrometry. Mass Spectrom. Rev. 2005 , 24, 1-29.

    Article  CAS  Google Scholar 

  97. Giles K; Pringle SD; Worthington KR; Little D; Wildgoose JL; Bateman RH: Applications of a Traveling Wave-Based Radio-Frequency-Only Stacked Ring Ion Guide. Rapid Commun. Mass Spectrom. 2004 , 18, 2401-2414.

    Article  CAS  Google Scholar 

  98. Huang Y; Guan S; Kim HS; Marshall AG: Ion Transport Through a Strong Magnetic Field Gradient by Radio Frequency-Only Octupole Ion Guides. Int. J. Mass Spectrom. Ion Proc. 1996 , 152, 121-133.

    Article  CAS  Google Scholar 

  99. Douglas DJ; French JB: Collisional Focusing Effects in Radiofrequency Quadrupoles. J. Am. Soc. Mass Spectrom. 1992 , 3, 398-408.

    Article  CAS  Google Scholar 

  100. Tolmachev AV; Udseth HR; Smith RD: Radial Stratification of Ions As a Function of Mass to Charge Ratio in Collisional Cooling Radio Frequency Multipoles Used As Ion Guides or Ion Traps. Rapid Commun. Mass Spectrom. 2000 , 14, 1907-1913.

    Article  CAS  Google Scholar 

  101. Collings BA; Campbell JM; Mao D; Douglas DJ: A Combined Linear Ion Trap TOF System With Improved Performance and MSn Capabilities. Rapid Commun. Mass Spectrom. 2001 , 15, 1777-1795.

    Article  CAS  Google Scholar 

  102. Douglas DJ: Applications of Collision Dynamics in Quadrupole Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1998 , 9, 101-113.

    Article  CAS  Google Scholar 

  103. Thomson BA: 1997 McBryde Medal Award Lecture Radio Frequency Quadrupole Ion Guides in Modern Mass Spectrometry. Can. J. Chem. 1998 , 76, 499-505.

    CAS  Google Scholar 

  104. Lock CM; Dyer E: Characterization of High Pressure Quadrupole Collision Cells Possessing Direct Current Axial Fields. Rapid Commun. Mass Spectrom. 1999 , 13, 432-448.

    Article  CAS  Google Scholar 

  105. Lock CM; Dyer E: Simulation of Ion Trajectories Through a High Pressure Radio Frequency Only Quadrupole Collision Cell by SIMION 6.0. Rapid Commun. Mass Spectrom. 1999 , 13, 422-431.

    Article  CAS  Google Scholar 

  106. Adlhart C; Hinderling C; Baumann H; Chen P: Mechanistic Studies of Olefin Metathesis by Ruthenium Carbene Complexes Using Electrospray Ionization Tandem Mass Spectrometry. J. Am. Chem. Soc. 2000 , 122, 8204-8214.

    Article  CAS  Google Scholar 

  107. Mao D; Douglas DJ: H/D Exchange of Gas Phase Bradykinin Ions in a Linear Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 2003 , 14, 85-94.

    Article  CAS  Google Scholar 

  108. Hager JW: A New Linear Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2002 , 16, 512-526.

    CAS  Google Scholar 

  109. Schwartz JC; Senko MW; Syka JEP: A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2002 , 13, 659-669.

    Article  CAS  Google Scholar 

  110. Hofstadler SA; Sannes-Lowery KA; Griffey RH: Enhanced Gas-Phase Hydrogen-Deuterium Exchange of Oligonucleotide and Protein Ions Stored in an External Multipole Ion Reservoir. J. Mass Spectrom. 2000 , 35, 62-70.

    Article  CAS  Google Scholar 

  111. Mao D; Ding C; Douglas DJ: Hydrogen/Deuterium Exchange of Myoglobin Ions in a Linear Quadrupole Ion Trap. Rapid Commun. Mass Spectrom.2002,16, 1941-1945.

    Article  CAS  Google Scholar 

  112. Koizumi H; Whitten WB; Reilly PTA: Trapping of Intact, Singly-Charged, Bovine Serum Albumin Ions Injected From the Atmosphere With a 10-Cm Diameter, Frequency-Adjusted Linear Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 2008 , 19, 1942-1947.

    Article  CAS  Google Scholar 

  113. Aebersold R; Mann M: Mass Spectrometry-Based Proteomics. Nature 2003, 422, 198-207.

    Article  CAS  Google Scholar 

  114. Hopfgartner G; Husser C; Zell M: Rapid Screening and Characterization of Drug Metabolites Using a New Quadrupole- Linear Ion Trap Mass Spectrometer. J. Mass Spectrom. 2003 , 38, 138-150.

    Article  CAS  Google Scholar 

  115. Hager JW: Recent Trends in Mass Spectrometer Development. Analytical and Bioanalytical Chemistry 2004 , 378, 845-850.

    Article  CAS  Google Scholar 

  116. Collings BA; Scott WR; Londry FA: Resonant Excitation in a Low-Pressure Linear Ion Trap. J. Am. Soc. Mass Spectrom. 2003 , 14, 622-634.

    Article  CAS  Google Scholar 

  117. Welling M; Schuessler HA; Thompson RI; Walther H: Ion/Molecule Reactions, Mass Spectrometry and Optical Spectroscopy in a Linear Ion Trap. Int. J. Mass Spectrom. Ion Proc. 1998 , 172, 95-114.

    Article  CAS  Google Scholar 

  118. Londry FA; Hager JW: Mass Selective Axial Ion Ejection From a Linear Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 2003 , 14, 1130-1147.

    Article  CAS  Google Scholar 

  119. March RE; Todd JFJ: Quadrupole Ion Trap Mass Spectrometry; John Wiley & Sons Inc: Hoboken, 2005 .

    Book  Google Scholar 

  120. Mass Spectrometry in Drug Metabolism and Pharmacokinetics; Ramanathan R, (Hrsg.); John Wiley & Sons, Inc.: Hoboken, 2009 .

    Google Scholar 

  121. Dahl DA; Delmore JE; Appelhans AD: SIMION PC/PS2 Electrostatic Lens Design Program. Rev. Sci. Instrum. 1990 , 61, 607-609.

    Article  CAS  Google Scholar 

  122. Dahl DA: SIMION for the Personal Computer in Reflection. Int. J. Mass Spectrom. 2000 , 200, 3-25.

    Article  CAS  Google Scholar 

  123. Magparangalan DP; Garrett TJ; Drexler DM; Yost RA: Analysis of Large Peptides by MALDI Using a Linear Quadrupole Ion Trap With Mass Range Extension. Anal. Chem. 2010 , 82, 930-934.

    Article  CAS  Google Scholar 

  124. March RE; Hughes RJ: Quadrupole Storage Mass Spectrometry; John Wiley & Sons: Chichester, 1989 .

    Google Scholar 

  125. March RE: Quadrupole Ion Trap Mass Spectrometry: Theory, Simulation, Recent Developments and Applications. Rapid Commun. Mass Spectrom. 1998 , 12, 1543-1554.

    Article  CAS  Google Scholar 

  126. March RE: Quadrupole Ion Trap Mass Spectrometry. A View at the Turn of the Century. Int. J. Mass Spectrom. 2000 , 200, 285-312.

    Article  CAS  Google Scholar 

  127. Stafford G, Jr.: Ion Trap Mass Spectrometry: a Personal Perspective. J. Am. Soc. Mass Spectrom. 2002 , 13, 589-596.

    Article  CAS  Google Scholar 

  128. March RE: Quadrupole Ion Traps. Mass Spectrom. Rev. 2009 , 28, 961-989.

    Article  CAS  Google Scholar 

  129. Practical Aspects of Ion Trap Mass Spectrometry; March RE; Todd JFJ, (Hrsgs.); CRC Press: Boca Raton, 1995 ;Bd. 1 - Fundamentals of Ion Trap Mass Spectrometry.

    Google Scholar 

  130. Practical Aspects of Ion Trap Mass Spectrometry; March RE; Todd JFJ, (Hrsgs.); CRC Press: Boca Raton, 1995;Bd. 2 - Ion Trap Instrumentation.

    Google Scholar 

  131. Practical Aspects of Ion Trap Mass Spectrometry; March RE; Todd JFJ, (Hrsgs.); CRC Press: Boca Raton, 1995; Bd. 3 - Chemical, Environmental, and Biomedical Applications.

    Google Scholar 

  132. Yoshinari K: Theoretical and Numerical Analysis of the Behavior of Ions Injected into a Quadrupole Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2000 , 14, 215-223.

    Article  CAS  Google Scholar 

  133. Alheit R; Kleinadam S; Vedel F; Vedel M; Werth G: Higher Order Non-Linear Resonances in a Paul Trap. Int. J. Mass Spectrom. Ion Proc. 1996 , 154, 155-169.

    Article  CAS  Google Scholar 

  134. Stafford GC, Jr.; Kelley PE; Syka JEP; Reynolds WE; Todd JFJ: Recent Improvements in and Analytical Applications of Advanced Ion Trap Technology. Int. J. Mass Spectrom. Ion Proc. 1984 , 60, 85-98.

    Article  CAS  Google Scholar 

  135. Wu HF; Brodbelt JS: Effects of Collisional Cooling on Ion Detection in a Quadrupole Ion Trap Mass Spectrometer. Int. J. Mass Spectrom. Ion Proc. 1992 , 115, 67-81.

    Article  CAS  Google Scholar 

  136. Plass WR; Li H; Cooks RG: Theory, Simulation and Measurement of Chemical Mass Shifts in RF Quadrupole Ion Traps. Int. J. Mass Spectrom. 2003 , 228, 237-267.

    Article  CAS  Google Scholar 

  137. Wuerker RF; Shelton H; Langmuir RV: Electrodynamic Containment of Charged Particles. J. Appl. Phys. 1959 , 30, 342-349.

    Article  Google Scholar 

  138. Ehlers M; Schmidt S; Lee BJ; Grotemeyer J: Design and Set-Up of an External Ion Source Coupled to a Quadrupole-Ion-Trap Reflectron-TOF Hybrid Instrument. Eur. J. Mass Spectrom. 2000 , 6, 377-385.

    Article  CAS  Google Scholar 

  139. Forbes MW; Sharifi M; Croley T; Lausevic Z; March RE: Simulation of Ion Trajectories in a Quadrupole Ion Trap: a Comparison of Three Simulation Programs. J. Mass Spectrom. 1999 , 34, 1219-1239.

    Article  CAS  Google Scholar 

  140. Coon JJ; Steele HA; Laipis P; Harrison WW: Laser Desorption-Atmospheric Pressure Chemical Ionization: a Novel Ion Source for the Direct Coupling of Polyacrylamide Gel Electrophoresis to Mass Spectrometry. J. Mass Spectrom. 2002 , 37, 1163-1167.

    Article  CAS  Google Scholar 

  141. Nappi M; Weil C; Cleven CD; Horn LA; Wollnik H; Cooks RG: Visual Representations of Simulated Three- Dimensional Ion Trajectories in an Ion Trap Mass Spectrometer. Int. J. Mass Spectrom. Ion Proc. 1997 , 161, 77-85.

    Article  CAS  Google Scholar 

  142. Dawson PH; Hedman JW; Whetten NR: Mass Spectrometer. Rev. Sci. Instrum. 1969 , 40, 1444-1450.

    Article  CAS  Google Scholar 

  143. Dawson PH; Whetten NR: Miniature Mass Spectrometer. Anal. Chem. 1970 , 42, 103A-108A.

    CAS  Google Scholar 

  144. Griffiths IW; Heesterman PJL: Quadrupole Ion Store (QUISTOR) Mass Spectrometry. Int. J. Mass Spectrom. Ion Proc. 1990 , 99, 79-98.

    Article  CAS  Google Scholar 

  145. Griffiths IW: Recent Advances in Ion- Trap Technology. Rapid Commun. Mass Spectrom. 1990 , 4, 69-73.

    Article  CAS  Google Scholar 

  146. Kelley PE; Stafford GC, Jr.; Syka JEP; Reynolds WE; Louris JN; Todd JFJ: New Advances in the Operation of the Ion Trap Mass Spectrometer, 1986; Kap.10B, 869870.

    Google Scholar 

  147. Splendore M; Lausevic M; Lausevic Z; March RE: Resonant Excitation and/or Ejection of Ions Subjected to DC and RF Fields in a Commercial Quadrupole Ion Trap. Rapid Commun. Mass Spectrom. 1997 , 11, 228-233.

    Article  CAS  Google Scholar 

  148. Creaser CS; Stygall JW: A Comparison of Overtone and Fundamental Resonances for Mass Range Extension by Resonance Ejection in a Quadrupole Ion Trap Mass Spectrometer. Int. J. Mass Spectrom. 1999 , 190/191, 145-151.

    Article  CAS  Google Scholar 

  149. Williams JD; Cox KA; Cooks RG; McLuckey SA; Hart KJ; Goeringer DE: Resonance Ejection Ion Trap Mass Spectrometry and Nonlinear Field Contributions: The Effect of Scan Direction on Mass Resolution. Anal. Chem. 1994 , 66, 725-729.

    Article  CAS  Google Scholar 

  150. Ding L; Sudakov M; Brancia FL; Giles R; Kumashiro S: A Digital Ion Trap Mass Spectrometer Coupled With Atmospheric Pressure Ion Sources. J. Mass Spectrom. 2004 , 39, 471-484.

    Article  CAS  Google Scholar 

  151. Cooks RG; Amy JW; Bier M; Schwartz JC; Schey K: New Mass Spectrometers, 1989; Kap.11A, 33-52.

    Google Scholar 

  152. Kaiser RE, Jr.; Louris JN; Amy JW; Cooks RG: Extending the Mass Range of the Quadrupole Ion Trap Using Axial Modulation. Rapid Commun. Mass Spectrom. 1989 , 3, 225-229.

    Article  CAS  Google Scholar 

  153. Weber-Grabau M; Kelley P; Bradshaw S; Hoekman D; Evans S; Bishop P: Recent Advances in Ion-Trap Technology, 1989;Kap.11A, 152-153.

    Google Scholar 

  154. Siethoff C; Wagner-Redeker W; Schafer M; Linscheid M: HPLC-MS With an Ion Trap Mass Spectrometer. Chimia 1999 , 53, 484-491.

    CAS  Google Scholar 

  155. Eades DM; Johnson JV; Yost RA: Nonlinear Resonance Effects During Ion Storage in a Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 1993 , 4, 917-929.

    Article  CAS  Google Scholar 

  156. Makarov AA: Resonance Ejection From the Paul Trap: A Theoretical Treatment Incorporating a Weak Octapole Field. Anal. Chem. 1996 , 68, 4257-4263.

    Article  CAS  Google Scholar 

  157. Doroshenko VM; Cotter RJ: Losses of Ions During Forward and Reverse Scans in a Quadrupole Ion Trap Mass Spectrometer and How to Reduce Them. J. Am. Soc. Mass Spectrom. 1997 , 8, 1141-1146.

    Article  CAS  Google Scholar 

  158. von Busch F; Paul W: Nonlinear Resonances in Electric Mass-Filters As a Consequence of Field Irregularities. Z. Phys. 1961 , 164, 588-594.

    Article  Google Scholar 

  159. Dawson PH; Whetten NR: Nonlinear Resonances in Quadrupole Mass Spectrometers Due to Imperfect Fields. I. Quadrupole Ion Trap. Int. J. Mass Spectrom. Ion Phys. 1969 , 2, 45-59.

    Article  CAS  Google Scholar 

  160. Wang Y; Franzen J: The Non-Linear Ion Trap. Part 3. Multipole Components in Three Types of Practical Ion Trap. Int. J. Mass Spectrom. Ion Proc. 1994 , 132, 155-172.

    Article  CAS  Google Scholar 

  161. Franzen J: The Non-Linear Ion Trap. Part 5. Nature of Non-Linear Resonances and Resonant Ion Ejection. Int. J. Mass Spectrom. Ion Proc. 1994 , 130, 15-40.

    Article  CAS  Google Scholar 

  162. Berton A; Traldi P; Ding L; Brancia FL: Mapping the Stability Diagram of a Digital Ion Trap (DIT) Mass Spectrometer Varying the Duty Cycle of the Trapping Rectangular Waveform. J. Am. Soc. Mass Spectrom. 2008 , 19, 620-625.

    Article  CAS  Google Scholar 

  163. Ding L; Kumashiro S: Ion Motion in the Rectangular Wave Quadrupole Field and Digital Operation Mode of a Quadrupole Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2006 , 20, 3-8.

    Article  CAS  Google Scholar 

  164. Li X; Jiang G; Luo C; Xu F; Wang Y; Ding L; Ding C: Ion Trap Array Mass Analyzer: Structure and Performance. Anal. Chem. 2009 , 81, 4840-4846.

    Article  CAS  Google Scholar 

  165. Brodbelt JS; Louris JN; Cooks RG: Chemical Ionization in an Ion Trap Mass Spectrometer. Anal. Chem. 1987 , 59, 1278-1285.

    Article  CAS  Google Scholar 

  166. Doroshenko VM; Cotter RJ: Injection of Externally Generated Ions into an Increasing Trapping Field of a Quadrupole Ion Trap Mass Spectrometer. J. Mass Spectrom. 1997 , 31, 602-615.

    Article  Google Scholar 

  167. Van Berkel GJ; Glish GL; McLuckey SA: Electrospray Ionization Combined With Ion Trap Mass Spectrometry. Anal. Chem. 1990 , 62, 1284-1295.

    Article  CAS  Google Scholar 

  168. Wang Y; Schubert M; Ingendoh A; Franzen J: Analysis of Non-Covalent Protein Complexes Up to 290 KDa Using Electrospray Ionization and Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000 , 14, 12-17.

    Article  Google Scholar 

  169. Lawrence EO; Livingston MS: The Production of High-Speed Light Ions Without the Use of High Voltages. Phys. Rev. 1932 , 40, 19-35.

    Article  CAS  Google Scholar 

  170. Comisarow MB; Marshall AG: The Early Development of FT-ICR (FT-ICR) Spectroscopy. J. Mass Spectrom. 1996 , 31, 581-585.

    Article  CAS  Google Scholar 

  171. Smith LG: New Magnetic Period Mass Spectrometer. Rev. Sci. Instrum. 1951 , 22, 115-116.

    Article  CAS  Google Scholar 

  172. Sommer H; Thomas HA; Hipple JA: Measurement of E/M by Cyclotron Resonance. Phys. Rev. 1951 , 82, 697-702.

    Article  CAS  Google Scholar 

  173. Baldeschwieler JD: Ion Cyclotron Resonance Spectroscopy. Science 1968 , 159, 263-273.

    Article  CAS  Google Scholar 

  174. Analytical Applications of FT-ICR Mass Spectrometry; Assamoto B, (Hrsg.); VCH: Weinheim, 1991.

    Google Scholar 

  175. Comisarow MB; Marshall AG: FT-ICR Spectroscopy. Chem. Phys. Lett. 1974 , 25, 282-283.

    Article  CAS  Google Scholar 

  176. Comisarow MB; Marshall AG: Frequency-Sweep FT-ICR Spectroscopy. Chem. Phys. Lett. 1974 , 26, 489-490.

    Article  CAS  Google Scholar 

  177. Wanczek K-P: ICR Spectrometry - A Review of New Developments in Theory, Instrumentation and Applications. I. 19831986. Int. J. Mass Spectrom. Ion Proc. 1989 , 95, 1-38.

    Article  CAS  Google Scholar 

  178. Marshall AG; Grosshans PB: FT-ICR Mass Spectrometry: the Teenage Years. Anal. Chem. 1991 , 63, 215A-229A.

    CAS  Google Scholar 

  179. Amster IJ: Fourier Transform Mass Spectrometry. J. Mass Spectrom. 1996 , 31, 1325-1337.

    Article  CAS  Google Scholar 

  180. Dienes T; Salvador JP; Schurch S; Scott JR; Yao J; Cui S; Wilkins CL: Fourier Transform Mass Spectrometry-Advancing Years (1992-Mid. 1996). Mass Spectrom. Rev. 1996 , 15, 163-211.

    Article  CAS  Google Scholar 

  181. Marshall AG: Milestones in FT-ICR Mass Spectrometry Technique Development. Int. J. Mass Spectrom. 2000 , 200, 331-356.

    Article  CAS  Google Scholar 

  182. Smith RD: Evolution of ESI-Mass Spectrometry and FT-ICR for Proteomics and Other Biological Applications. Int. J. Mass Spectrom. 2000 , 200, 509-544.

    Article  CAS  Google Scholar 

  183. Marshall AG; Hendrickson CL; Shi SDH: Scaling MS Plateaus With High- Resolution FT-ICR-MS. Anal. Chem. 2002 , 74, 252A-259A.

    Article  CAS  Google Scholar 

  184. Schaub TM; Hendrickson CL; Horning S; Quinn JP; Senko MW; Marshall AG: High-Performance Mass Spectrometry: FT-ICR at 14.5 Tesla. Anal. Chem. 2008 , 80, 3985-3990.

    Article  CAS  Google Scholar 

  185. He F; Hendrickson CL; Marshall AG: Baseline Mass Resolution of Peptide Isobars: A Record for Molecular Mass Resolution. Anal. Chem. 2001 , 73, 647650.

    Article  CAS  Google Scholar 

  186. Bossio RE; Marshall AG: Baseline Resolution of Isobaric Phosphorylated and Sulfated Peptides and Nucleotides by Electrospray Ionization FT-ICR-MS: Another Step Toward MS-Based Proteomics. Anal. Chem. 2002 , 74, 16741679.

    Article  CAS  Google Scholar 

  187. White FM; Marto JA; Marshall AG: An External Source 7 T FT-ICR Mass Spectrometer With Electrostatic Ion Guide. Rapid Commun. Mass Spectrom. 1996 , 10, 1845-1849.

    Article  CAS  Google Scholar 

  188. Marshall AG; Hendrickson CL: FT-ICR Detection: Principles and Experimental Configurations. Int. J. Mass Spectrom. 2002 , 215, 59-75.

    Article  CAS  Google Scholar 

  189. Marshall AG; Hendrickson CL; Jackson GS: FT-ICR Mass Spectrometry: a Primer. Mass Spectrom. Rev. 1998 , 17, 1-35.

    Article  CAS  Google Scholar 

  190. Shi SDH; Drader JJ; Freitas MA; Hendrickson CL; Marshall AG: Comparison and Interconversion of the Two Most Common Frequency-to-Mass Calibration Functions for FT-ICR Mass Spectrometry. Int. J. Mass Spectrom. 2000 , 195/196, 591-598.

    Article  CAS  Google Scholar 

  191. Nikolaev EN; Gorshkov MV: Dynamics of Ion Motion in an Elongated Cylindrical Cell of an ICR Spectrometer and the Shape of the Signal Registered. Int. J. Mass Spectrom. Ion Proc. 1985 , 64, 115-125.

    Article  CAS  Google Scholar 

  192. Pan Y; Ridge DP; Wronka J; Rockwood AL: Resolution Improvement by Using Harmonic Detection in an Ion Cyclotron Resonance Mass Spectrometer. Rapid Commun. Mass Spectrom. 1987 , 1, 120-121.

    Article  CAS  Google Scholar 

  193. Derome AE: Modern NMR Techniques for Chemistry Research; Pergamon Press: Oxford, 1987 .

    Google Scholar 

  194. Guan S; Marshall AG: Stored Waveform Inverse Fourier Transform (SWIFT) Ion Excitation in Trapped-Ion Mass Spectrometry: Theory and Applications. Int. J. Mass Spectrom. Ion Proc. 1996 , 157/158, 5-37.

    Article  CAS  Google Scholar 

  195. Caravatti P; Allemann M: The Infinity Cell: a New Trapped-Ion Cell With Radiofrequency Covered Trapping Electrodes for FT-ICR-MS. Org. Mass Spectrom. 1991 , 26, 514-518.

    Article  CAS  Google Scholar 

  196. Huang Y; Li G-Z; Guan S; Marshall AG: A Combined Linear Ion Trap for Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997 , 8, 962-969.

    Article  CAS  Google Scholar 

  197. Guan S; Marshall AG: Ion Traps for FT- ICR Mass Spectrometry: Principles and Design of Geometric and Electric Configurations. Int. J. Mass Spectrom. Ion Proc. 1995 , 146/147, 261-296.

    Article  CAS  Google Scholar 

  198. Schweikhard L; Ziegler J; Bopp H; Luetzenkirchen K: The Trapping Condition and a New Instability of the Ion Motion in the Ion Cyclotron Resonance Trap. Int. J. Mass Spectrom. Ion Proc. 1995 , 141, 77-90.

    Article  CAS  Google Scholar 

  199. Comisarow MB; Marshall AG: Theory of FT-ICR Mass Spectroscopy. I. Fundamental Equations and Low-Pressure Line Shape. J. Chem. Phys. 1976 , 64, 110-119.

    Article  CAS  Google Scholar 

  200. Comisarow MB: Signal Modeling for Ion Cyclotron Resonance. J. Chem. Phys. 1978 , 69, 4097-4104.

    Article  CAS  Google Scholar 

  201. Hughey CA; Rodgers RP; Marshall AG: Resolution of 11,000 Compositionally Distinct Components in a Single Electrospray Ionization FT-ICR Mass Spectrum of Crude Oil. Anal. Chem. 2002 , 74, 4145-4149.

    Article  CAS  Google Scholar 

  202. Solouki T; Emmet MR; Guan S; Marshall AG: Detection, Number, and Sequence Location of Sulfur-Containing Amino Acids and Disulfide Bridges in Peptides by Ultrahigh-Resolution MALDI FTICR Mass Spectrometry. Anal. Chem. 1997 , 69, 1163-1168.

    Article  CAS  Google Scholar 

  203. Wu Z; Hendrickson CL; Rodgers RP; Marshall AG: Composition of Explosives by Electrospray Ionization FT-ICR Mass Spectrometry. Analytical Chemistry 2002 , 74, 1879-1883.

    Article  CAS  Google Scholar 

  204. Wang Y; Shi SDH; Hendrickson CL; Marshall AG: Mass-Selective Ion Accumulation and Fragmentation in a Linear Octopole Ion Trap External to a FT-ICR Mass Spectrometer. Int. J. Mass Spectrom. 2000 , 198, 113-120.

    Article  CAS  Google Scholar 

  205. Makarov A: Electrostatic Axially Harmonic Orbital Trapping: A High- Performance Technique of Mass Analysis. Anal. Chem. 2000 , 72, 1156-1162.

    Article  CAS  Google Scholar 

  206. Scigelova M; Makarov A: Orbitrap Mass Analyzer - Overview and Applications in Proteomics. Practical Proteomics 2006 , 6, 16-21.

    Article  CAS  Google Scholar 

  207. Makarov A; Denisov E; Lange O; Horning S: Dynamic Range of Mass Accuracy in LTQ Orbitrap Hybrid Mass Spectrometer. J. Am. Chem. Soc. 2006 , 17, 977-982.

    CAS  Google Scholar 

  208. Makarov A; Denisov E; Kholomeev A; Balschun W; Lange O; Strupat K; Horning S: Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal. Chem. 2006 , 78, 2113-2120.

    Article  CAS  Google Scholar 

  209. Macek B; Waanders LF; Olsen JV; Mann M: Top-Down Protein Sequencing and MS3 on a Hybrid Linear Quadrupole Ion Trap-Orbitrap Mass Spectrometer. Molecular and Cellular Proteomics 2006 , 5, 949-958.

    Article  CAS  Google Scholar 

  210. Perry RH; Cooks RG; Noll RJ: Orbitrap Mass Spectrometry: Instrumentation, Ion Motion and Applications. Mass Spectrom. Rev. 2008 , 27, 661-699.

    Article  CAS  Google Scholar 

  211. Kingdon KH: A Method for Neutralizing the Electron Space Charge by Positive Ionization at Very Low Pressures. Phys. Rev. 1923 , 21, 408-418.

    Article  CAS  Google Scholar 

  212. Knight RD: Storage of Ions From Laser- Produced Plasmas. Applied Physics Letters 1981 , 38, 221-223.

    Article  CAS  Google Scholar 

  213. Oksman P: A Fourier Transform TOF Mass Spectrometer. A SIMION Calculation Approach. Int. J. Mass Spectrom. Ion Proc. 1995 , 141, 67-76.

    Article  CAS  Google Scholar 

  214. Hardman M; Makarov AA: Interfacing the Orbitrap Mass Analyzer to an Electrospray Ion Source. Anal. Chem. 2003 , 75, 1699-1705.

    Article  CAS  Google Scholar 

  215. Olsen JV; de Godoy LMF; Li G; Macek B; Mortensen P; Pesch R; Makarov A; Lange O; Horning S; Mann M: Parts Per Million Mass Accuracy on an Orbitrap Mass Spectrometer Via Lock Mass Injection into a C-Trap. Molecular and Cellular Proteomics 2005 , 4, 2010-2021.

    Article  CAS  Google Scholar 

  216. Perry RH; Hu Q; Salazar GA; Cooks RG; Noll RJ: Rephasing Ion Packets in the Orbitrap Mass Analyzer to Improve Resolution and Peak Shape. J. Am. Soc. Mass Spectrom. 2009 , 20, 1397-1404.

    Article  CAS  Google Scholar 

  217. Makarov A; Denisov E: Dynamics of Ions of Intact Proteins in the Orbitrap Mass Analyzer. J. Am. Soc. Mass Spectrom. 2009 , 20, 1486-1495.

    Article  CAS  Google Scholar 

  218. Makarov A; Denisov E; Lange O: Performance Evaluation of a High-Field Orbitrap Mass Analyzer. J. Am. Soc. Mass Spectrom. 2009 , 20, 1391-1396.

    Article  CAS  Google Scholar 

  219. Amy JW; Baitinger WE; Cooks RG: Building Mass Spectrometers and a Philosophy of Research. J. Am. Soc. Mass Spectrom. 1990 , 1, 119-128.

    Article  CAS  Google Scholar 

  220. Futrell JH: Development of Tandem Mass Spectrometry. One Perspective. Int. J. Mass Spectrom. 2000 , 200, 495-508.

    Article  CAS  Google Scholar 

  221. McLuckey SA; Glish GL; Cooks RG: Kinetic Energy Effects in Mass Spectrometry/Mass Spectrometry Using a Sector/Quadrupole Tandem Instrument. Int. J. Mass Spectrom. Ion Phys. 1981 , 39, 219-230.

    Article  CAS  Google Scholar 

  222. Glish GL; McLuckey SA; Ridley TY; Cooks RG: A New "Hybrid" Sector/Quadrupole Mass Spectrometer for Mass Spectrometry/Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1982 , 41, 157-177.

    Article  CAS  Google Scholar 

  223. Bradley CD; Curtis JM; Derrick PJ; Wright B: Tandem Mass Spectrometry of Peptides Using a Magnetic Sector/Quadrupole Hybrid-the Case for Higher Collision Energy and Higher Radio-Frequency Power. Anal. Chem. 1992 , 64, 2628-2635.

    Article  CAS  Google Scholar 

  224. Schoen AE; Amy JW; Ciupek JD; Cooks RG; Dobberstein P; Jung G: A Hybrid BEQQ Mass Spectrometer. Int. J. Mass Spectrom. Ion Proc. 1985 , 65, 125-140.

    Article  CAS  Google Scholar 

  225. Ciupek JD; Amy JW; Cooks RG; Schoen AE: Performance of a Hybrid Mass Spectrometer. Int. J. Mass Spectrom. Ion Proc. 1985 , 65, 141-157.

    Article  CAS  Google Scholar 

  226. Louris JN; Wright LG; Cooks RG: New Scan Modes Accessed With a Hybrid Mass Spectrometer. Anal. Chem. 1985 , 57, 2918-2924.

    Article  CAS  Google Scholar 

  227. Loo JA; Munster H: Magnetic Sector-Ion Trap Mass Spectrometry With Electrospray Ionization for High Sensitivity Peptide Sequencing. Rapid Commun. Mass Spectrom. 1999 , 13, 54-60.

    Article  CAS  Google Scholar 

  228. Strobel FH; Solouki T; White MA; Russell DH: Detection of Femtomole and Sub- Femtomole Levels of Peptides by Tandem Magnetic Sector/Reflectron TOF Mass Spectrometry and Matrix-Assisted Laser Desorption Ionization. J. Am. Soc. Mass Spectrom. 1991 , 2, 91-94.

    Article  CAS  Google Scholar 

  229. Bateman RH; Green MR; Scott G; Clayton E: A Combined Magnetic Sector-TOF Mass Spectrometer for Structural Determination Studies by Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995 , 9, 1227-1233.

    Article  CAS  Google Scholar 

  230. Aicher KP; Muller M; Wilhelm U; Grotemeyer J: Design and Setup of an Ion Trap-Reflectron-TOF Mass Spectrometer. Eur. Mass Spectrom. 1995 , 1, 331-340.

    Article  CAS  Google Scholar 

  231. Wilhelm U; Aicher KP; Grotemeyer J: Ion Storage Combined With Reflectron TOF Mass Spectrometry: Ion Cloud Motions As a Result of Jet-Cooled Molecules. Int. J. Mass Spectrom. Ion Proc. 1996 , 152, 1110-120.

    Article  Google Scholar 

  232. Morris HR; Paxton T; Dell A; Langhorne J; Berg M; Bordoli RS; Hoyes J; Bateman RH: High Sensitivity Collisionally- Activated Decomposition Tandem Mass Spectrometry on a Novel Quadrupole/Orthogonal-Acceleration TOF Mass Spectrometer. Rapid Commun. Mass Spectrom. 1996 , 10, 889-896.

    Article  CAS  Google Scholar 

  233. Shevchenko A; Chernushevich IV; Ens W; Standing KG; Thompson B; Wilm M; Mann M: Rapid ’De Novo’ Peptide Sequencing by a Combination of Nanoelectrospray, Isotopic Labeling and a Quadrupole/TOF Mass Spectrometer. Rapid Commun. Mass Spectrom. 1997 , 11, 1015-1024.

    Article  CAS  Google Scholar 

  234. Hopfgartner G; Chernushevich IV; Covey T; Plomley JB; Bonner R: Exact Mass Measurement of Product Ions for the Structural Elucidation of Drug Metabolites With a Tandem Quadrupole Orthogonal- Acceleration TOF Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1999 , 10, 1305-1314.

    Article  CAS  Google Scholar 

  235. Collins DC; Lee ML: Developments in Ion Mobility Spectrometry-Mass Spectrometry. Analytical and Bioanalytical Chemistry 2002 , 372, 66-73.

    Article  CAS  Google Scholar 

  236. Mukhopadhyay R: IMS/MS: Its Time Has Come. Anal. Chem. 2008 , 80, 7918-7920.

    Article  CAS  Google Scholar 

  237. Bohrer BC; Merenbloom SI; Koeniger SL; Hilderbrand AE; Clemmer DE: Biomolecule Analysis by Ion Mobility Spectrometry. Annual Review of Analytical Chemistry 2008 , 1, 293-327.

    Article  CAS  Google Scholar 

  238. Karasek FW: Drift-Mass Spectrometer. Research and Development 1970 , 21, 25-27.

    CAS  Google Scholar 

  239. Karasek FW: Plasma Chromatograph. Research and Development 1970 , 21, 34-37.

    CAS  Google Scholar 

  240. Karasek FW; Cohen MJ; Carroll DI: Trace Studies of Alcohols in the Plasma Chromatograph-Mass Spectrometer. Journal of Chromatographic Science 1971 , 9, 390-392.

    CAS  Google Scholar 

  241. Kanu AB; Dwivedi P; Tam M; Matz L; Hill HH, Jr.: Ion Mobility-Mass Spectrometry. J. Mass Spectrom. 2008 , 43, 1-22.

    Article  CAS  Google Scholar 

  242. Pringle SD; Giles K; Wildgoose JL; Williams JP; Slade SE; Thalassinos K; Bateman RH; Bowers MT; Scrivens JH: An Investigation of the Mobility Separation of Some Peptide and Protein Ions Using a New Hybrid Quadrupole/Travelling Wave IMS/Oa-ToF Instrument. Int. J. Mass Spectrom. 2007 , 261, 1-12.

    Article  CAS  Google Scholar 

  243. Platzner IT; Habfast K; Walder AJ; Goetz A: Modern Isotope Ratio Mass Spectrometry; Platzner IT, (Hrsg.); John Wiley & Sons: Chichester, 1997.

    Google Scholar 

  244. Stanton HE; Chupka WA; Inghram MG: Electron Multipliers in Mass Spectrometry; Effect of Molecular Structure. Rev. Sci. Instrum. 1956 , 27, 109.

    Article  CAS  Google Scholar 

  245. Frank M: Mass Spectrometry With Cryogenic Detectors. Nucl. Instrum. Methods Phys. Res., A 2000 , 444, 375-384.

    CAS  Google Scholar 

  246. Allen JS: An Improved Electron- Multiplier Particle Counter. Rev. Sci. Instrum. 1947 , 18, 739-749.

    Article  CAS  Google Scholar 

  247. Wang GH; Aberth W; Falick AM: Evidence Concerning the Identity of Secondary Particles in Post-Acceleration Detectors. Int. J. Mass Spectrom. Ion Proc. 1986 , 69, 233-237.

    Article  CAS  Google Scholar 

  248. Busch KL: The Electron Multiplier. Spectroscopy 2000 , 15, 28-33.

    CAS  Google Scholar 

  249. Schroder E: Massenspektrometrie - Begriffe und Definitionen; Springer- Verlag: Heidelberg, 1991 .

    Google Scholar 

  250. Boerboom AJH: Array Detection of Mass Spectra, a Comparison With Conventional Detection Methods. Org. Mass Spectrom. 1991 , 26, 929-935.

    Article  CAS  Google Scholar 

  251. Kurz EA: Channel Electron Multipliers. Am. Laboratory 1979 , 11, 67-82.

    CAS  Google Scholar 

  252. Wiza JL: Microchannel Plate Detectors. Nucl. Instrum. Methods 1979 , 162, 587-601.

    Article  CAS  Google Scholar 

  253. Laprade BN; Labich RJ: Microchannel Plate-Based Detectors in Mass Spectrometry. Spectroscopy 1994 , 9, 26-30.

    CAS  Google Scholar 

  254. Alexandrov ML; Gall LN; Krasnov NV; Lokshin LR; Chuprikov AV: Discrimination Effects in Inorganic Ion- Cluster Detection by Secondary-Electron Multiplier in Mass Spectrometry Experiments. Rapid Commun. Mass Spectrom. 1990 , 4, 9-12.

    Article  CAS  Google Scholar 

  255. Geno PW; Macfarlane RD: Secondary Electron Emission Induced by Impact of Low-Velocity Molecular Ions on a Microchannel Plate. Int. J. Mass Spectrom. Ion Proc. 1989 , 92, 195-210.

    Article  CAS  Google Scholar 

  256. Hedin H; Hakansson K; Sundqvist BUR: On the Detection of Large Organic Ions by Secondary Electron Production. Int. J. Mass Spectrom. Ion Proc. 1987 , 75, 275-289.

    Article  CAS  Google Scholar 

  257. Hill JA; Biller JE; Martin SA; Biemann K; Yoshidome K; Sato K: Design Considerations, Calibration and Applications of an Array Detector for a Four-Sector Tandem Mass Spectrometer. Int. J. Mass Spectrom. Ion Proc. 1989 , 92, 211-230.

    Article  CAS  Google Scholar 

  258. Birkinshaw K: Fundamentals of Focal Plane Detectors. J. Mass Spectrom. 1997 , 32, 795-806.

    Article  CAS  Google Scholar 

  259. Cottrell JS; Evans S: The Application of a Multichannel Electro-Optical Detection System to the Analysis of Large Molecules by FAB Mass Spectrometry. Rapid Commun. Mass Spectrom. 1987 , 1, 1-2.

    Article  CAS  Google Scholar 

  260. Cottrell JS; Evans S: Characteristics of a Multichannel Electrooptical Detection System and Its Application to the Analysis of Large Molecules by Fast Atom Bombardment Mass Spectrometry. Anal. Chem. 1987 , 59, 1990-1995.

    Article  CAS  Google Scholar 

  261. Birkinshaw K; Langstaff DP: The Ideal Detector. Rapid Commun. Mass Spectrom. 1996 , 10, 1675-1677.

    CAS  Google Scholar 

  262. Hucknall DJ: Vacuum Technology and Applications; Butterworth-Heinemann: Oxford, 1991 .

    Google Scholar 

  263. Pupp W; Hartmann HK: Vakuum-Technik - Grundlagen und Anwendungen; Fachbuchverlag Leipzig: Leipzig, 1991 .

    Google Scholar 

  264. Wutz M; Adam H; Walcher W: Theory and Practice of Vacuum Technology; 5 Aufl.; Vieweg: Braunschweig/Wiesbaden, 1992 .

    Google Scholar 

  265. Foundations of Vacuum Science and Technology; Lafferty JM, (Hrsg.); John Wiley & Sons: New York, 1998 .

    Google Scholar 

  266. Leybold Vacuum Products and Reference Book; Umrath W, (Hrsg.); Leybold Vacuum GmbH: Koln, 2001 .

    Google Scholar 

  267. Busch KL: Vacuum in Mass Spectroscopy. Nothing Can Surprise You. Spectroscopy 2000, 15, 22-25.

    Google Scholar 

  268. Busch KL: High-Vacuum Pumps in Mass Spectrometers. Spectroscopy 2001 , 16, 14-18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2013). Massenspektrometer. In: Massenspektrometrie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-8274-2981-0_4

Download citation

Publish with us

Policies and ethics