Skip to main content

Prinzipien der Ionisation und Ionendissoziation

  • Chapter
  • 20k Accesses

Zusammenfassung

Ein Massenspektrometer kann als eine Art chemisches Labor aufgefasst werden, das speziell für die Untersuchung von Ionen in der Gasphase eingerichtet ist [1,2]. Zusätzlich zu seiner üblichen Verwendung, nämlich der Erzeugung von Massenspektren für analytische Zwecke, kann man mit einem Massenspektrometer auch die Fragmentierungswege ausgewählter Ionen, Ion-Molekül-Reaktionen u.v.m. untersuchen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Porter CJ; Beynon JH; Ast T: The Modern Mass Spectrometer. A Complete Chemical Laboratory. Org. Mass Spectrom. 1981 , 16, 101-114.

    CAS  Google Scholar 

  2. Schwarz H: The Chemistry of Naked Molecules or the Mass Spectrometer As a Laboratory. Chem. unserer Zeit 1991 , 25,268-278.

    CAS  Google Scholar 

  3. Kazakevich Y: Citation Used by Permission. http://hplc.chem.shu.edu/ 1996, Seton Hall University, South Orange, NJ.

    Google Scholar 

  4. Cooks RG; Beynon JH; Caprioli RM: Metastable Ions; Elsevier: Amsterdam, 1973 .

    Google Scholar 

  5. Levsen K: Fundamental Aspects of Organic Mass Spectrometry; Verlag Chemie: Weinheim, 1978.

    Google Scholar 

  6. Franklin JL: Energy Distributions in the Unimolecular Decomposition of Ions, in Gas Phase Ion Chemistry, Bowers MT,  Hrsg.); Academic Press: New York, 1979 ; Kap. 7, 272-303.

    Google Scholar 

  7. Beynon JH; Gilbert JR: Energetics and Mechanisms of Unimolecular Reactions of Positive Ions: Mass Spectrometric Methods, in Gas Phase Ion Chemistry, Bowers MT, (Hrsg.); Academic Press:New York, 1979 ; Kap. 13,153-179.

    Google Scholar 

  8. Vogel P: The Study of Carbocations in the Gas Phase, in Carbocation Chemistry, Elsevier: Amsterdam, 1985; Kap. 2, 61-84.

    Google Scholar 

  9. Holmes JL: Assigning Structures to Ions in the Gas Phase. Org. Mass Spectrom. 1985 , 20, 169-183.

    CAS  Google Scholar 

  10. Lorquet JC: Basic Questions in Mass Spectrometry. Org. Mass Spectrom. 1981 , 16, 469-481.

    CAS  Google Scholar 

  11. Lorquet JC: Landmarks in the Theory of Mass Spectra. Int. J. Mass Spectrom. 2000 , 200, 43-56.

    CAS  Google Scholar 

  12. Mark TD: Fundamental Aspects of Electron Impact Ionization. Int. J. Mass Spectrom. IonPhys. 1982 , 45, 125-145.

    Google Scholar 

  13. Mark TD: Electron Impact Ionization, in Gaseous ion Chemistry and Mass Spectrometry, Futrell JH, (Hrsg.); John Wiley and Sons: New York, 1986 ; 61-93.

    Google Scholar 

  14. Wolkenstein K; Gross JH; Oeser T; Scholer HF: Spectroscopic Characterization and Crystal Structure of the 1,2,3,4,5,6-Hexahydro-phenanthro- [1,10,9,8-0pqra]Perylene. Tetrahedron Lett. 2002 , 43, 1653-1655.

    CAS  Google Scholar 

  15. Harrison AG: Fundamentals of Gas Phase Ion Chemistry, in Chemical Ionization Mass Spectrometry, 2. Aufl.;CRC Press: Boca Raton, 1992; Kap. 2, 26.

    Google Scholar 

  16. De Wall R; Neuert H: The Formation of Negative Ions From Electron Impact With Tungsten Hexafluoride. Z. Naturforsch., A. 1977 , 32A, 968-971.

    CAS  Google Scholar 

  17. Schroder E: Massenspektrometrie – Begriffe und Definitionen; Springer- Verlag: Heidelberg, 1991.

    Google Scholar 

  18. Jones EG; Harrison AG: Study of Penning Ionization Reactions Using a Single- Source Mass Spectrometer. Int. J. Mass Spectrom. Ion Phys. 1970 , 5, 137-156.

    CAS  Google Scholar 

  19. Penning FM: Ionization by Metastable Atoms. Naturwissenschaften 1927 , 15,818.

    CAS  Google Scholar 

  20. Hornbeck JA; Molnar JP: Mass- Spectrometric Studies of Molecular Ions in the Noble Gases. Phys. Rev. 1951 , 84,621-625.

    CAS  Google Scholar 

  21. Faubert D; Paul GJC; Giroux J; Betrand MJ: Selective Fragmentation and Ionization of Organic Compounds Using an Energy-Tunable Rare-Gas Metastable Beam Source. Int. J. Mass Spectrom. Ion Proc. 1993 , 124, 69-77.

    CAS  Google Scholar 

  22. Svec HJ; Junk GA: Electron-Impact Studies of Substituted Alkanes. Journal of the American Chemical Society 1967 , 89,790-796.

    CAS  Google Scholar 

  23. Honig RE: Ionization Potentials of Some Hydrocarbon Series. J. Chem. Phys. 1948 , 16, 105-112.

    CAS  Google Scholar 

  24. NIST: NIST Chemistry Webbook. http://webbook.nist.gov/ 2002.

    Google Scholar 

  25. Baldwin M; Kirkien-Konasiewicz A; Loudon AG; Maccoll A; Smith D: Localized or Delocalized Charges in Molecule- Ions? Chem. Commun. 1966, 574.

    Google Scholar 

  26. McLafferty FW: Generalized Mechanism for Mass Spectral Reactions. Chem. Commun. 1966, 78-80.

    Google Scholar 

  27. Wellington CA; Khowaiter SH: Charge Distributions in Molecules and Ions: MINDO 3 Calculations. An Alternative of the Charge Localization Concept in Mass Spectrometry. Tetrahedron 1978 , 34,2183-2190.

    CAS  Google Scholar 

  28. Baldwin MA; Welham KJ: Charge Localization by Molecular Orbital Calculations. I. Urea and Thiourea. Rapid. Commun. Mass Spectrom. 1987 , 1, 13-15.

    CAS  Google Scholar 

  29. Baldwin MA; Welham KJ: Charge Localization by Molecular Orbital Calculations. II. Formamide, Thio- formamide and N-Methylated Analogs. Org. Mass Spectrom. 1988 , 23, 425-428.

    CAS  Google Scholar 

  30. Weinkauf R; Lehrer F; Schlag EW; Metsala A: Investigation of Charge Localization and Charge Delocalization in Model Molecules by Multiphoton Ionization Photoelectron Spectroscopy and DFT Calculations. Faraday Discussions 2000 , 115, 363-381.

    CAS  Google Scholar 

  31. Cone C; Dewar MJS; Landman D: Gaseous Ions. 1. MINDO/3 Study of the Rearrangement of Benzyl Cation to Tropylium. J. Am. Chem. Soc. 1977 , 99,372-376.

    CAS  Google Scholar 

  32. Born M; Oppenheimer JR: Zur Quantentheorie der Molekeln. Annalen der Physik 1927 , 84, 457-484.

    CAS  Google Scholar 

  33. Seiler R: Born-Oppenheimer Approximation. International Journal of Quantum Chemistry 1969 , 3, 25-32.

    CAS  Google Scholar 

  34. Lipson RH: Ultraviolet and Visible Absorption Spectroscopy, in Encyclopedia of Applied Spectroscopy, Andrews DL, (Hrsg.); Wiley-VCH: Berlin, 2009; Kap. 11, 353-380.

    Google Scholar 

  35. Franck J: Elementary Processes of Photochemical Reactions. Trans. Faraday Soc. 1925 , 21, 536-542. 

    Google Scholar 

  36. Condon EU: Theory of Intensity Distribution in Band Systems. Phys. Rev. 1926 , 28, 1182-1201.

    CAS  Google Scholar 

  37. Dunn GH: Franck-Condon Factors for the Ionization of H2 and D2. J. Chem. Phys. 1966 , 44, 2592-2594.

    CAS  Google Scholar 

  38. Mark TD: Fundamental Aspects of Electron Impact Ionization. Int. J. Mass Spectrom. Ion Phys. 1982 , 45, 125-145.

    Google Scholar 

  39. Mark TD: Electron Impact Ionization, in Gaseous ion Chemistry and Mass Spectrometry, Futrell JH, (Hrsg.); John Wiley and Sons: New York, 1986 ; 61-93.

    Google Scholar 

  40. McLafferty FW; Wachs T; Lifshitz C; Innorta G; Irving P: Substituent Effects in Unimolecular Ion Decompositions. XV. sMechanistic Interpretations and the Quasi- Equilibrium Theory. J. Am. Chem. Soc. 1970 , 92, 6867-6880.

    CAS  Google Scholar 

  41. Egger KW; Cocks AT: Homopolar- and Heteropolar Bond Dissociation Energies and Heats of Formation of Radicals and Ions in the Gas Phase. I. Data on Organic Molecules. Helv. Chim. Acta 1973 , 56, 1516-1536.

    CAS  Google Scholar 

  42. Lossing FP; Semeluk GP: Free Radicals by Mass Spectrometry. XLII. Ionization Potentials and Ionic Heats of Formation for C1-C4 Alkyl Radicals. Can. J. Chem. 1970 , 48, 955-965.

    CAS  Google Scholar 

  43. Lossing FP; Holmes JL: Stabilization Energy and Ion Size in Carbocations in the Gas Phase. J. Am. Chem. Soc. 1984 , 106,6917-6920.

    CAS  Google Scholar 

  44. Cox JD; Pilcher G: Thermochemistry of Organic and Organometallic Compounds; 1st Ausg.; Academic Press: London, 1970.

    Google Scholar 

  45. Chatham H; Hils D; Robertson R; Gallagher A: Total and Partial Electron Collisional Ionization Cross Sections for Methane, Ethane, Silane, and Disilane. J. Chem. Phys. 1984 , 81, 1770-1777.

    CAS  Google Scholar 

  46. Wahrhaftig AL: Ion Dissociations in the Mass Spectrometer, in Advances in Mass Spectrometry, Waldron JD, (Hrsg.); Pergamon Press: Oxford, 1959 ; 274-286.

    Google Scholar 

  47. Wahrhaftig AL: Unimolecular Dissociations of Gaseous Ions, in Gaseous ion Chemistry and Mass Spectrometry, Futrell JH, (Hrsg.); John Wiley and Sons: New York, 1986; 7-24.

    Google Scholar 

  48. Rosenstock HM; Krauss M: Quasi- Equilibrium Theory of Mass Spectra, in Mass Spectrometry of Organic Ions,McLafferty FW, (Hrsg.); Academic Press: London, 1963 ; 1-64.

    Google Scholar 

  49. Bohme DK; Mackay GI: Bridging the Gap Between the Gas Phase and Solution: Transition in the Kinetics of Nucleophilic Displacement Reactions. J. Am. Chem. Soc. 1981 , 103, 978-979.

    CAS  Google Scholar 

  50. Speranza M: Gas Phase Ion Chemistry Versus Solution Chemistry. Int. J. Mass Spectrom. Ion Proc. 1992 , 118/119, 395-447.

    Google Scholar 

  51. Rosenstock HM; Wallenstein MB; Wahrhaftig AL; Eyring H: Absolute Rate Theory for Isolated Systems and the Mass Spectra of Polyatomic Molecules. Proc. Natl. Acad. Sci. U. S. A. 1952 , 38, 667-678.

    CAS  Google Scholar 

  52. McAdoo DJ; Bente PFI; Gross ML; McLafferty FW: Metastable Ion Characteristics. XXIII. Internal Energy of Product Ions Formed in Massspectral Reactions. Org. Mass Spectrom. 1974 , 9, 525-535.

    CAS  Google Scholar 

  53. Meier K; Seibl J: Measurement of Ion Residence Times in a Commercial Electron Impact Ion Source. Int. J. Mass Spectrom. Ion Phys. 1974 , 14, 99-106.

    CAS  Google Scholar 

  54. Chupka WA: Effect of Unimolecular Decay Kinetics on the Interpretation of Appearance Potentials. J. Chem. Phys. 1959 , 30, 191-211.

    CAS  Google Scholar 

  55. Holmes JL; Terlouw JK: The Scope of Metastable Peak Shape Observations. Org. Mass Spectrom. 1980 , 15, 383-396.

    CAS  Google Scholar 

  56. Williams DH: A Transition State Probe. Acc. Chem. Res. 1977 , 10, 280-286.

    CAS  Google Scholar 

  57. Williams DH; Hvistendahl G: Kinetic Energy Release in Relation to Symmetry- Forbidden Reactions. J. Am. Chem. Soc. 1974 , 96, 6753-6755.

    CAS  Google Scholar 

  58. Williams DH; Hvistendahl G: Kinetic Energy Release As a Mechanistic Probe. The Role of Orbital Symmetry. J. Am. Chem. Soc. 1974 , 96, 6755-6757.

    Google Scholar 

  59. Hvistendahl G; Williams DH: Partitioning of Reverse Activation Energy Between Kinetic and Internal Energy in Reactions of Simple Organic Ions. J. Chem. Soc. , Perkin Trans. 2 1975 , 881-885.

    Google Scholar 

  60. Hvistendahl G; Uggerud E: Secondary Isotope Effect on Kinetic Energy Release and Reaction Symmetry. Org. Mass Spectrom. 1985 , 20, 541-542.

    CAS  Google Scholar 

  61. Kim KC; Beynon JH; Cooks RG: Energy Partitioning by Mass Spectrometry. Chloroalkanes and Chloroalkenes. J. Chem. Phys. 1974 , 61, 1305-1314.

    CAS  Google Scholar 

  62. Haney MA; Franklin JL: Correlation of Excess Energies of Electron Impact Dissociations With the Translational Energies of the Products. J. Chem. Phys. 1968 , 48, 4093-4097.

    CAS  Google Scholar 

  63. Cooks RG; Williams DH: The Relative Rates of Fragmentation of Benzoyl Ions Generated Upon Electron Impact From Different Precursors. Chem. Commun. 1968, 627-629.

    Google Scholar 

  64. Lin YN; Rabinovitch BS: Degrees of Freedom Effect and Internal Energy Partitioning Upon Ion Decomposition. J. Phys. Chem. 1970 , 74, 1769-1775.

    CAS  Google Scholar 

  65. Bente III. PF; McLafferty FW; McAdoo DJ; Lifshitz C: Internal Energy of Product Ions Formed in Mass Spectral Reactions. The Degrees of Freedom Effect. J. Phys. Chem. 1975 , 79, 713-721.

    Google Scholar 

  66. Todd JFJ: Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. International Journal of Mass Spectrometry and Ion Processes 1995 , 142, 211-240.

    CAS  Google Scholar 

  67. Robinson PJ; Holbrook KA: Unimolecular Reactions, in Unimolecular Reactions,John Wiley & Sons: London, 1972 ; Kap. 9.

    Google Scholar 

  68. Ingemann S; Hammerum S; Derrick PJ; Fokkens RH; Nibbering NMM: Energy- Dependent Reversal of Secondary Isotope Effects on Simple Cleavage Reactions: Tertiary Amine Radical Cations With Deuterium at Remote Positions. Org. Mass Spectrom. 1989 , 24, 885-889.

    CAS  Google Scholar 

  69. Lowry TH; Schueller Richardson K: Isotope Effects, in Mechanism and Theory in Organic Chemistry, 1st. Ausg.; Harper and Row: New York, 1976 ; Kap. 1.7.

    Google Scholar 

  70. Stringer MB; Underwood DJ; Bowie JH; Allison CE; Donchi KF; Derrick PJ: Is the McLafferty Rearrangement of Ketones Concerted or Stepwise? The Application of Kinetic Isotope Effects. Org. Mass Spectrom. 1992 , 27, 270-276.

    CAS  Google Scholar 

  71. Derrick PJ: Isotope Effects in Fragmentation. Mass Spectrom. Rev. 1983 , 2, 285-298.

    CAS  Google Scholar 

  72. Hvistendahl G; Uggerud E: Deuterium Isotope Effects and Mechanism of the Gas-Phase Reaction [C3H7] + -  >  [C3H5] + + H2. Org. Mass Spectrom. 1986 , 21, 347-350.

    CAS  Google Scholar 

  73. Howe I; McLafferty FW: Unimolecular Decomposition of Toluene and Cycloheptatriene Molecular Ions. Variation of the Degree of Scrambling and Isotope Effect With Internal Energy. J. Am. Chem. Soc. 1971 , 93, 99-105.

    Google Scholar 

  74. Bertrand M; Beynon JH; Cooks RG: Isotope Effects Upon Hydrogen Atom Loss From Molecular Ions. Org. Mass Spectrom. 1973 , 7, 193-201.

    CAS  Google Scholar 

  75. Lau AYK; Solka BH; Harrison AG: Isotope Effects and H/D Scrambling in the Fragmentation of Labeled Propenes. Org. Mass Spectrom. 1974 , 9, 555-557.

    CAS  Google Scholar 

  76. Benoit FM; Harrison AG: Hydrogen Migrations in Mass Spectrometry. I. The Loss of Olefin From Phenyl-n-Propyl Ether Following Electron Impact Ionization and Chemical Ionization. Org. Mass Spectrom. 1976 , 11, 599-608.

    CAS  Google Scholar 

  77. Veith HJ; Gross JH: Alkene Loss From Metastable Methyleneimmonium Ions Unusual Inverse Secondary Isotope Effect in Ion-Neutral Complex Intermediate Fragmentations. Org. Mass Spectrom. 1991 , 26, 1097-1105.

    CAS  Google Scholar 

  78. Ingemann S; Kluft E; Nibbering NMM; Allison CE; Derrick PJ; Hammerum S: Time-Dependence of the Isotope Effects in the Unimolecular Dissociation of Tertiary Amine Molecular Ions. Org. Mass Spectrom. 1991 , 26, 875-881.

    CAS  Google Scholar 

  79. Nacson S; Harrison AG: Dependence of Secondary Hydrogen/Deuterium Isotope Effects on Internal Energy. Org. Mass Spectrom. 1985 , 20, 429-430.

    CAS  Google Scholar 

  80. Ingemann S; Hammerum S; Derrick PJ: Secondary Hydrogen Isotope Effects on Simple Cleavage Reactions in the Gas Phase: The a-Cleavage of Tertiary Amine Cation Radicals. J. Am. Chem. Soc. 1988 , 110, 3869-3873.

    CAS  Google Scholar 

  81. Rosenstock HM: The Measurement of Ionization and Appearance Potentials. Int. J. Mass Spectrom. Ion Phys. 1976 , 20,139-190.

    CAS  Google Scholar 

  82. Urban B; Bondybey VE: Multiphoton Photoelectron Spectroscopy: Watching Molecules Dissociate. Phys. Chem. Chem. Phys. 2001 , 3, 1942-1944.

    CAS  Google Scholar 

  83. Nicholson AJC: Measurement of Ionization Potentials by Electron Impact. J. Chem. Phys. 1958 , 29, 1312-1318.

    CAS  Google Scholar 

  84. Barfield AF; Wahrhaftig AL: Determination of Appearance Potentials by the Critical Slope Method. J. Chem. Phys. 1964 , 41, 2947-2948.

    Google Scholar 

  85. Levin RD; Lias SG: Ionization Potential and Appearance Potential Measurements, 1971-1981. National Standard Reference Data Series 1982 , 71, 634 pp.

    Google Scholar 

  86. Harris FM; Beynon JH: Photodissociation in Beams: Organic Ions, in Gas Phase Ion Chemistry – Ions and Light, 1st. Ausg.; Bowers MT, (Hrsg.); Academic Press: New York, 1985 ; Kap. 19, 99-128.

    Google Scholar 

  87. Dunbar RC: Ion Photodissociation, in Gas Phase Ion Chemistry, 1st. Ausg.; Bowers MT, (Hrsg.); Academic Press: New York, 1979 ; Kap. 14, 181-220.

    Google Scholar 

  88. Maeda K; Semeluk GP; Lossing FP: A Two-Stage Double-Hemispherical Electron Energy Selector. Int. J. Mass Spectrom. Ion Phys. 1968 , 1, 395-407.

    Google Scholar 

  89. Traeger JC; McLoughlin RG: A Photoionization Study of the Energetics of the C7H7 + Ion Formed From C7H8 Precursors. Int. J. Mass Spectrom. Ion Phys. 1978 , 27, 319-333.

    CAS  Google Scholar 

  90. Boesl U: Laser Mass Spectrometry for Environmental and Industrial Chemical Trace Analysis. J. Mass Spectrom. 2000 , 35, 289-304.

    CAS  Google Scholar 

  91. Wendt KDA: The New Generation of Resonant Laser Ionization Mass Spectrometers: Becoming Competitive for Selective Atomic Ultra-Trace Determination? Eur. J. Mass Spectrom. 2002 , 8, 273-285.

    CAS  Google Scholar 

  92. Matsumoto J; Misawa K; Ishiuchi Si; Suzuki T; Hayashi Si; Fujii M: On-Site and Real-Time Mass Spectrometer Utilizing the Resonance-Enhanced Multiphoton Ionization Technique. Shinku 2007 , 50, 241-245.

    CAS  Google Scholar 

  93. Thanner R; Oser H; Grotheer H-H: Time- Resolved Monitoring of Aromatic Compounds in an Experimental Incinerator Using an Improved Jet- Resonance-Enhanced Multi-Photon Ionization System Jet-REMPI. Eur. Mass Spectrom. 1998 , 4, 215-222.

    CAS  Google Scholar 

  94. Zenobi R; Zhan Q; Voumard P: Multiphoton Ionization Spectroscopy in Surface Analysis and Laser Desorption Mass Spectrometry. Mikrochimica Acta 1996 , 124, 273-281.

    CAS  Google Scholar 

  95. Weickhardt C; Grun C; Grotemeyer J: Fundamentals and Features of Analytical Laser Mass Spectrometry With Ultrashort Laser Pulses. Eur. Mass Spectrom. 1998 , 4, 239-244.

    CAS  Google Scholar 

  96. Turner DW; Al Jobory MI: Determination of Ionization Potentials by Photoelectron Energy Measurement. J. Chem. Phys. 1962 , 37, 3007-3008.

    CAS  Google Scholar 

  97. Muller-Dethlefs K; Sander M; Schlag EW: Two-Color Photoionization Resonance Spectroscopy of Nitric Oxide: Complete Separation of Rotational Levels of Nitrosyl Ion at the Ionization Threshold. Chem. Phys. Lett. 1984 , 112, 291-294.

    Google Scholar 

  98. Muller-Dethlefs K; Sander M; Schlag EW: A Novel Method Capable of Resolving Rotational Ionic States by the Detection of Threshold Photoelectrons With a Resolution of 1.2 Cm-1. Z. Naturforsch. 1984 , 39a, 1089-1091.

    Google Scholar 

  99. Schlag EW: ZEKE Spectroscopy; 1st Ausg.; Cambridge University Press: Cambridge, 1998 .

    Google Scholar 

  100. Edqvist O; Lindholm E; Selin LE; Asbrink L: Photoelectron Spectrum of Molecular Oxygen. Phys. Scr. 1970 , 1, 25-30.

    CAS  Google Scholar 

  101. Zhu L; Johnson P: Mass Analyzed Threshold Ionization Spectroscopy. J. Chem. Phys. 1991 , 94, 5769-5771.

    CAS  Google Scholar 

  102. Weickhardt C; Moritz F; Grotemeyer J: Time-of-Flight Mass Spectrometry: State- of-the-Art in Chemical Analysis and Molecular Science. Mass Spectrom. Rev. 1997 , 15, 139-162.

    Google Scholar 

  103. Gunzer F; Grotemeyer J: New Features in the Mass Analyzed Threshold Ionization (MATI) Spectra of Alkyl Benzenes. Phys. Chem. Chem. Phys. 2002 , 4, 5966-5972.

    CAS  Google Scholar 

  104. Peng X; Kong W: Zero Energy Kinetic Electron and Mass-Analyzed Threshold Ionization Spectroscopy of Nax(NH3)n (n = 1, 2, and 4) Complexes. J. Chem. Phys. 2002 , 117, 9306-9315.

    CAS  Google Scholar 

  105. Haines SR; Dessent CEH; Muller-Dethlefs K: Mass Analyzed Threshold Ionization of PhenolxCO: Intermolecular Binding Energies of a Hydrogen-Bonded Complex. J. Chem. Phys. 1999 , 111, 1947-1954.

    CAS  Google Scholar 

  106. Lavanchy A; Houriet R; Gaumann T: The Mass Spectrometric Fragmentation of N-Heptane. Org. Mass Spectrom. 1978 , 13,410-416.

    CAS  Google Scholar 

  107. Meisels GG; Chen CT; Giessner BG; Emmel RH: Energy-Deposition Functions in Mass Spectrometry. J. Chem. Phys. 1972 , 56, 793-800.

    CAS  Google Scholar 

  108. Herman JA; Li Y-H; Harrison AG: Energy Dependence of the Fragmentation of Some Isomeric C6H12 + . Ions. Org. Mass Spectrom. 1982 , 17, 143-150.

    CAS  Google Scholar 

  109. Lindinger W; Jordan A: Proton-Transfer- Reaction Mass Spectrometry (PTR-MS ): Online Monitoring of Volatile Organic Compounds at Pptv Levels. Chemical Society Reviews 1998 , 27, 347-354.

    CAS  Google Scholar 

  110. Blake RS; Monks PS; Ellis AM: Proton- Transfer Reaction Mass Spectrometry. Chem. Rev. 2009 , 109, 861-896.

    CAS  Google Scholar 

  111. Lias SG; Liebman JF; Levin RD: Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules. J. Phys. Chem. Ref. Data 1984, 13, 695-808.

    CAS  Google Scholar 

  112. Harrison AG: The Gas-Phase Basicities and Proton Affinities of Amino Acids and Peptides. Mass Spectrom. Rev. 1997, 16,201-217.

    CAS  Google Scholar 

  113. Kukol A; Strehle F; Thielking G; Grutzmacher H-F: Methyl Group Effect on the Proton Affinity of Methylated Acetophenones Studied by Two Mass Spectrometric Techniques. Org. Mass Spectrom. 1993 , 28, 1107-1110.

    CAS  Google Scholar 

  114. McMahon TB: Thermochemical Ladders: Scaling the Ramparts of Gaseous Ion Energetics. Int. J. Mass Spectrom. 2000, 200, 187-199.

    CAS  Google Scholar 

  115. Lias SG; Bartmess JE; Liebman JF; Holmes JL; Levin RD; Mallard WG: Gas-  Phase Ion and Neutral Thermochemistry. J. Phys. Chem. Ref. Data 1988, 17, Supplement 1, 861 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2013). Prinzipien der Ionisation und Ionendissoziation. In: Massenspektrometrie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-8274-2981-0_2

Download citation

Publish with us

Policies and ethics