Skip to main content

Anorganische Massenspektrometrie

  • Chapter
Massenspektrometrie

Zusammenfassung

Am Anfang der Massenspektrometrie stand das Bestreben, Ionen in Gasentladungen zu analysieren. Die Entdeckung der Isotopen und die Bestimmung ihrer Massen und relativen Häufigkeiten, d.h. der Isotopenverhältnisse, ist unmittelbar auf die Pionierarbeiten von Thomson, Aston, Dempster und vielen anderen zurückzuführen [1,2]. Die Ergebnisse dieser Messungen erwiesen sich bald ihrerseits als Triebfeder für neue Entdeckungen in der Physik. Die Entdeckung des Massendefekts beispielsweise war ein direkter Beweis für die in Einsteins spezieller Relativitätstheorie postulierte Äquivalenz von Energie und Masse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1.  de Laeter JR; Kurz MD: Alfred Nier and the Sector Field Mass Spectrometer. J. Mass Spectrom. 2006, 41, 847-854. 

    Article  CAS  Google Scholar 

  2.  Budzikiewicz H; Grigsby RD: Mass Spectrometry and Isotopes: A Century of Research and Discussion. Mass Spectrometry Reviews 2006, 25, 146-157. 

    Article  CAS  Google Scholar 

  3.  Platzner IT; Habfast K; Walder AJ; Goetz A: Modern Isotope Ratio Mass Spectrometry;Platzner IT, (Hrsg.); John Wiley & Sons: Chichester, 1997.

    Google Scholar 

  4.  Tuniz C; Bird JR; Fink D; Herzog GF: Accelerator Mass Spectrometry - Ultrasensitive Analysis for Global Science; CRC Press: Boca Raton, 1998. 

    Google Scholar 

  5.  Taylor HE: Inductively Coupled Plasma Mass Spectroscopy; Academic Press: London, 2000 .

    Google Scholar 

  6.  de Laeter JR: Applications of Inorganic Mass Spectrometry; John Wiley & Sons: New York, 2001 .

    Google Scholar 

  7.  Becker JS: Inorganic Mass Spectrometry: Principles and Applications; John Wiley & Sons:Chichester, 2008 .

    Google Scholar 

  8.  Douthitt CB: Commercial Development of HR-ICPMS, MC-ICPMS and HR-GDMS. Journal of Analytical Atomic Spectrometry 2008, 23, 685-689. 

    Article  CAS  Google Scholar 

  9.  Hieftje GM: Emergence and Impact of Alternative Sources and Mass Analyzers in Plasma Source Mass Spectrometry. Journal of Analytical Atomic Spectrometry 2008, 23, 661-672. 

    Article  CAS  Google Scholar 

  10.  de Laeter JR; De Bievre P; Peiser HS: Isotope Mass Spectrometry in Metrology. Mass Spectrom. Rev. 1992, 11, 193-245. 

    Article  CAS  Google Scholar 

  11.  Ma R; Staton I; McLeod CW; Gomez MB; Gomez MM; Palacios MA: Assessment of Airborne Platinum Contamination Via ICP-Mass Spectrometric Analysis of Tree Bark. Journal of Analytical Atomic Spectrometry 2001, 16, 1070-1075. 

    Article  CAS  Google Scholar 

  12.  Stuewer D; Jakubowski N: Elemental Analysis by Inductively Coupled Plasma Mass Spectrometry With Sector Field Instruments: a Progress Report. J. Mass Spectrom. 1998, 33, 579-590. 

    Article  CAS  Google Scholar 

  13.  Barker J; Garner RC: Biomedical Applications of Accelerator Mass Spectrometry-Isotope Measurements at the Level of the Atom. Rapid Commun. Mass Spectrom. 1999, 13, 285-293. 

    Article  CAS  Google Scholar 

  14.  Kutschera W: Progress in Isotope Analysis at Ultra-Trace Level by AMS. Int. J. Mass Spectrom. 2005, 242, 145-160. 

    Article  CAS  Google Scholar 

  15.  Becker JS; Zoriy M; Becker JS; Pickhardt C; Przybylski M: Determination of Phosphorus and Metals in Human Brain Proteins After Isolation by Gel Electrophoresis by Laser Ablation Inductively Coupled Plasma Source Mass Spectrometry. Journal of Analytical Atomic Spectrometry 2004, 19, 149-152. 

    Article  CAS  Google Scholar 

  16.  Guenther D; Hattendorf B: Solid Sample Analysis Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Trends in Analytical Chemistry 2005, 24,255-265. 

    Article  CAS  Google Scholar 

  17.  Becker JS; Zoriy M; Becker JS; Dobrowolska J; Matusch A: Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS ) in Elemental Imaging of Biological Tissues and in Proteomics. Journal of Analytical Atomic Spectrometry 2007, 22, 736-744. 

    Article  CAS  Google Scholar 

  18.  Cheah ELC; Koh HL: Biomedical Applications of Accelerator Mass Spectrometry. Current Analytical Chemistry 2008, 4, 102-110. 

    Article  CAS  Google Scholar 

  19.  Houk RS; Fassel VA; Flesch GD; Svec HJ; Gray AL; Taylor CE: Inductively Coupled Argon Plasma As an Ion Source for Mass Spectrometric Determination of Trace Elements. Anal. Chem. 1980, 52,2283-2289. 

    Article  CAS  Google Scholar 

  20.  Szpunar J: Metallomics: a New Frontier in Analytical Chemistry. Anal. Bioanal. Chem. 2004, 378, 54-56. 

    Article  CAS  Google Scholar 

  21.  Lobinski R; Schaumloffel D; Szpunar J: Mass Spectrometry in Bioinorganic Analytical Chemistry. Mass Spectrom. Rev. 2006, 25, 255-289. 

    Article  CAS  Google Scholar 

  22.  Walker AV: Why Is SIMS Underused in Chemical and Biological Analysis? Challenges and Opportunities. Anal. Chem. 2008, 80, 8865-8870. 

    Article  CAS  Google Scholar 

  23.  Cassiday L: SIMS and MALDI: Better Together. Anal. Chem. 2008, 80, 88-60. 

    Google Scholar 

  24.  Griffiths J: Secondary Ion Mass Spectrometry. Anal. Chem. 2008, 80,7194-7197. 

    Article  CAS  Google Scholar 

  25.  McDonnell LA; Heeren RMA: Imaging Mass Spectrometry. Mass Spectrom. Rev. 2007, 26, 606-643. 

    Article  CAS  Google Scholar 

  26.  Encinar JR; Ouerdane L; Buchmann W; Tortajada J; Lobinski R; Szpunar J: Identification of Water-Soluble Selenium- Containing Proteins in Selenized Yeast by Size-Exclusion-Reversed-Phase HPLC- ICP-MS Followed by MALDI-TOF and Electrospray Q-TOF Mass Spectrometry. Anal. Chem. 2003, 75, 3765-3774. 

    Article  CAS  Google Scholar 

  27.  Adams F; Vertes A: Inorganic Mass Spectrometry of Solid Samples. Fresenius J. Anal. Chem. 1990, 337, 638-647. 

    Article  CAS  Google Scholar 

  28.  Tanner SD; Baranov VI; Bandura DR: Reaction Cells and Collision Cells for ICP-MS: a Tutorial Review. Spectrochim. Acta, PartB 2002, 57B, 1361-1452. 

    Article  Google Scholar 

  29.  Koppenaal DW; Eiden GC; Barinaga CJ: Collision and Reaction Cells in Atomic Mass Spectrometry: Development, Status, and Applications. Journal of Analytical Atomic Spectrometry 2004, 19, 561-570. 

    Article  CAS  Google Scholar 

  30.  Becker JS; Dietze HJ: Inorganic Mass Spectrometric Methods for Trace, Ultratrace, Isotope, and Surface Analysis. Int. J. Mass Spectrom. 2000, 197, 1-35. 

    Article  CAS  Google Scholar 

  31.  Richter S; Goldberg SA: Improved Techniques for High Accuracy Isotope Ratio Measurements of Nuclear Materials Using Thermal Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2003, 229, 181-197. 

    Article  CAS  Google Scholar 

  32.  Halas S; Durakiewicz T: Filament Temperature Stabilizer for a Thermal Ionization Mass Spectrometer. Int. J. Mass Spectrom. 1998, 181, 167-171. 

    Article  CAS  Google Scholar 

  33.  Kawano H; Page FM: Experimental Methods and Techniques for Negative-Ion Production by Surface Ionization. Part I. Fundamental Aspects of Surface Ionization. Int. J. Mass Spectrom. Ion Phys. 1983, 50, 1-33. 

    Article  CAS  Google Scholar 

  34.  Kawano H; Hidaka Y; Page FM: Experimental Methods and Techniques for Negative-Ion Production by Surface Ionization. Part II. Instrumentation and Operation. Int. J. Mass Spectrom. Ion Phys. 1983, 50, 35-75. 

    Article  CAS  Google Scholar 

  35.  Heumann KG; Schindlmeier W; Zeininger H; Schmidt M: Application of an Economical and Small Thermal Ionization Mass Spectrometer for Accurate Anion Trace Analyses. Fresenius’ Zeitschrift fur Analytische Chemie 1985, 320, 457-462. 

    Article  CAS  Google Scholar 

  36.  Heumann KG; Kastenmayer P; Zeininger H: Lead and Thallium Trace Determination in the ppm and ppb Range in Biological Material by Mass Spectrometric Isotope Dilution Analysis.  Fresenius’ Zeitschrift fur Analytische Chemie 1981 , 306, 173-177. 

    Article  Google Scholar 

  37.  Waidmann E; Emons H; Duerbeck HW: Trace Determination of Tl, Cu, Pb, Cd, and Zn in Specimens of the Limnic Environment Using Isotope Dilution Mass Spectrometry With Thermal Ionization. Fresenius J. Anal. Chem. 1994, 350, 293-297. 

    CAS  Google Scholar 

  38.  Schade U; Stoll R; Rollgen FW: Thermal Surface Ionization Mass Spectrometry of Organic Salts. Int. J. Mass Spectrom. Ion Phys. 1983, 46, 337-340. 

    Article  CAS  Google Scholar 

  39.  Moens L: Applications of Mass Spectrometry in the Trace Element Analysis of Biological Materials. Fresenius J. Anal. Chem. 1997, 359, 309-316. 

    Article  CAS  Google Scholar 

  40.  Koppenaal DW: Atomic Mass Spectrometry. Anal. Chem. 1990, 62,303R-324R. 

    Article  CAS  Google Scholar 

  41.  Verlinden J; Gijbels R; Adams F: Application of Spark-Source Mass Spectrometry in the Analysis of Semiconductor Materials. A Review. Journal of Analytical Atomic Spectrometry 1986, 1, 411-419. 

    Article  CAS  Google Scholar 

  42.  Jochum KP: Elemental Analysis by Spark Source Mass Spectrometry, in Modern Analytical Geochemistry, Robin Gill, (Hrsg.); Addison Wesley Longman: Harlow, 1997 ; Kap. 11, 188-199. 

    Google Scholar 

  43.  Jochum KP; Stoll B; Pfander JA; Seufert M; Flanz M; Maissenbacher P; Hofmann M; Hofmann AW: Progress in Multi-Ion Counting Spark-Source Mass Spectrometry (MIC-SSMS ) for the Analysis of Geological Samples. Fresenius Journal of Analytical Chemistry 2001, 370, 647-653. 

    Article  CAS  Google Scholar 

  44.  Saprykin AI; Becker JS; Dietze HJ: Investigation of the Analytical Performance of Gliding Spark Source Mass Spectrometry (GSSMS ) for the Trace Analysis of Nonconducting Materials. Fresenius J. Anal. Chem. 1999 , 364, 763-767/. 

    Article  CAS  Google Scholar 

  45.  Hoffmann V; Kasik M; Robinson PK; Venzago C: Glow Discharge Mass Spectrometry. Anal. Bioanal. Chem. 2005 , 381, 173-188. 

    Article  CAS  Google Scholar 

  46.  Wiedemann B; Alt HC; Meyer JD; Michelmann RW; Bethge K: Spark Source Mass Spectrometric Calibration of the Local Vibrational Mode Absorption of Carbon in Gallium Arsenide on Arsenic  Sublattice Sites. Fresenius J. Anal. Chem. 1999, 364, 768-771. 

    Article  CAS  Google Scholar 

  47.  Gijbels R; Bogaerts A: Recent Trends in Solid Mass Spectrometry. GDMS and Other Methods. Fresenius J. Anal. Chem. 1997, 359, 326-330. 

    Article  CAS  Google Scholar 

  48.  Stuewer D: Glow Discharge Mass Spectrometry - a Versatile Tool for Elemental Analysis. Fresenius J. Anal. Chem. 1990, 337, 737-742. 

    CAS  Google Scholar 

  49.  Marcus RK; King FL, Jr.; Harrison WW: Hollow Cathode Plume As an Atomization/Ionization Source for Solids Mass Spectrometry. Anal. Chem. 1986, 58,972-974. 

    Article  CAS  Google Scholar 

  50.  Harrison WW; Hess KR; Marcus RK; King FL: Glow Discharge Mass Spectrometry. Anal. Chem. 1986, 58,341A-342A, 344A, 346A, 348A, 350A, 352A. 

    Article  Google Scholar 

  51.  Duckworth DC; Marcus RK: Radio Frequency Powered Glow Discharge Atomization/Ionization Source for Solids Mass Spectrometry. Anal. Chem. 1989, 61,1879-1886. 

    Article  CAS  Google Scholar 

  52.  Marcus RK: Radiofrequency Powered Glow Discharges for Emission and Mass Spectrometry: Operating Characteristics, Figures of Merit and Future Prospects. Journal of Analytical Atomic Spectrometry 1994, 9, 1029-1037. 

    Article  CAS  Google Scholar 

  53.  Marcus RK: Radiofrequency Powered Glow Discharges: Opportunities and Challenges. Plenary Lecture. Journal of Analytical Atomic Spectrometry 1996, 11,821-828. 

    Article  CAS  Google Scholar 

  54.  Harrison WW; Klingler JA; Ratliff PH; Mei Y; Barshick CM: Glow Discharge Techniques in Analytical Chemistry. Anal. Chem. 1990, 62, 943A-949A. 

    Article  CAS  Google Scholar 

  55.  King FL; Harrison WW: Glow Discharge Mass Spectrometry: an Introduction to the Technique and Its Utility. Mass Spectrom. Rev. 1990, 9, 285-317. 

    Article  CAS  Google Scholar 

  56.  Bogaerts A; Gijbels R: New Developments and Applications in GDMS. Fresenius J. Anal. Chem. 1999, 364, 367-375. 

    CAS  Google Scholar 

  57.  Nelis T; Pallosi J: Glow Discharge As a Tool for Surface and Interface Analysis. Applied Spectroscopy Reviews 2006, 41 , 227-258. 

    Article  CAS  Google Scholar 

  58.  Jakubowski N; Dorka R; Steers E; Tempez A: Trends in Glow Discharge Spectroscopy. Journal of Analytical Atomic Spectrometry 2007, 22, 722-735. 

    Article  CAS  Google Scholar 

  59.  Penning FM: Ionization by Metastable Atoms. Naturwissenschaften 1927, 15,818. 

    Article  CAS  Google Scholar 

  60.  Bogaerts A: The Glow Discharge: an Exciting Plasma! Journal of Analytical Atomic Spectrometry 1999, 14, 1375-1384. 

    Article  CAS  Google Scholar 

  61.  Xing Y; Xiaojia L; Haizhou W: Determination of Trace Elements and Correction of Mass Spectral Interferences in Superalloy Analyzed by Glow Discharge Mass Spectrometry. European Journal of Mass Spectrometry 2008, 14,211-218. 

    Article  CAS  Google Scholar 

  62.  Winchester MR; Payling R: Radio- Frequency Glow Discharge Spectrometry: A Critical Review. Spectrochimica Acta, Part B: Atomic Spectroscopy 2004, 59B,607-666. 

    Article  CAS  Google Scholar 

  63.  Majidi V; Moser M; Lewis C; Hang W; King FL: Explicit Chemical Speciation by Microsecond Pulsed Glow Discharge Time-of-Flight Mass Spectrometry: Concurrent Acquisition of Structural, Molecular and Elemental Information. Journal of Analytical Atomic Spectrometry 2000, 15, 19-25. 

    Article  CAS  Google Scholar 

  64.  Lewis CL; Moser MA; Dale DE, Jr.; Hang W; Hassell C; King FL; Majidi V: Time- Gated Pulsed Glow Discharge: Real-Time Chemical Speciation at the Elemental, Structural, and Molecular Level for Gas Chromatography Time-of-Flight Mass Spectrometry. Anal. Chem. 2003, 75,1983-1996. 

    Article  CAS  Google Scholar 

  65.  Fliegel D; Fuhrer K; Gonin M; Guenther D: Evaluation of a Pulsed Glow Discharge Time-of-Flight Mass Spectrometer As a Detector for Gas Chromatography and the Influence of the Glow Discharge Source Parameters on the Information Volume in Chemical Speciation Analysis. Anal. Bioanal. Chem. 2006, 386, 169-179. 

    Article  CAS  Google Scholar 

  66.  Bandura DR; Baranov VI; Tanner SD: Reaction Chemistry and Collisional Processes in Multipole Devices for Resolving Isobaric Interferences in ICP- MS. Fresenius J. Anal. Chem. 2001, 370,454-470. 

    Article  CAS  Google Scholar 

  67.  Wilbur S: A Pragmatic Approach to Managing Interferences in ICP-MS. Spectroscopy 2008, 23, 18-23. 

    CAS  Google Scholar 

  68. Walsh JN: Inductively Coupled Plasma- Atomic Emission Spectrometry (ICP-AES ), in Modern Analytical Geochemistry, Robin Gill, (Hrsg.); Addison Wesley Longman: Harlow, 1997 ; 41-86. 

    Google Scholar 

  69.  Becker JS; Dietze HJ: Application of Double-Focusing Sector Field ICP Mass Spectrometry With Shielded Torch Using Different Nebulizers for Ultratrace and Precise Isotope Analysis of Long-Lived Radionuclides. Journal of Analytical Atomic Spectrometry 1999, 14, 1493-1500. 

    Article  CAS  Google Scholar 

  70.  Myers DP; Hieftje GM: Preliminary Design Considerations and Characteristics of an Inductively Coupled Plasma-Time- of-Flight Mass Spectrometer. Microchemical Journal 1993, 48, 259-277. 

    Article  CAS  Google Scholar 

  71.  Myers DP; Li G; Yang P; Hieftje GM: An Inductively Coupled Plasma-Time-of- Flight Mass Spectrometer for Elemental Analysis. Part I: Optimization and Characteristics. J. Am. Soc. Mass Spectrom. 1994, 5, 1008-1016. 

    Article  CAS  Google Scholar 

  72.  Myers DP; Mahoney PP; Li G; Hieftje GM: Isotope Ratios and Abundance Sensitivity Obtained With an Inductively Coupled Plasma-Time-of-Flight Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1995, 6, 920-927. 

    Article  CAS  Google Scholar 

  73.  Hieftje GM; Myers DP; Li G; Mahoney PP; Burgoyne TW; Ray SJ; Guzowski JP: Toward the Next Generation of Atomic Mass Spectrometers. Journal of Analytical Atomic Spectrometry 1997, 12, 287-292. 

    Article  CAS  Google Scholar 

  74.  Westphal CS; McLean JA; Acon BW; Allen LA; Montaser A: Axial Inductively Coupled Plasma Time-of-Flight Mass Spectrometry Using Direct Liquid Sample Introduction. Journal of Analytical Atomic Spectrometry 2002, 17, 669-675. 

    Article  CAS  Google Scholar 

  75.  Tanner M; Guenther D: A New ICP- TOFMS. Measurement and Readout of Mass Spectra With 30 ms Time Resolution, Applied to in-Torch LA-ICP- MS. Anal. Bioanal. Chem. 2008, 391,1211-1220. 

    Article  CAS  Google Scholar 

  76.  Milgram KE; White FM; Goodner KL; Watson CH; Koppenaal DW; Barinaga CJ; Smith BH; Winefordner JD; Marshall AG; Houk RS; Eyler JR: High-Resolution Inductively Coupled Plasma Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 1997, 69,3714-3721. 

    Article  CAS  Google Scholar 

  77.  Becker JS; Dietze HJ: Ultratrace and Precise Isotope Analysis by Double- Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry 1998, 13,1057-1063. 

    Article  CAS  Google Scholar 

  78.  Mahoney PP; Li G; Hieftje GM: Laser Ablation-Inductively Coupled Plasma  Mass Spectrometry With a Time-of-Flight Mass Analyzer. Journal of Analytical Atomic Spectrometry 1996, 11, 401-405. 

    Article  CAS  Google Scholar 

  79.  Pisonero J; Kroslakova I; Guenther D; Latkoczy C: Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Direct Analysis of the Spatial Distribution of Trace Elements in Metallurgical-Grade Silicon. Anal. Bioanal. Chem. 2006, 386,12-20. 

    Article  CAS  Google Scholar 

  80.  Neilsen JL; Abildtrup A; Christensen J; Watson P; Cox A; McLeod CW: Laser Ablation Inductively Coupled Plasma- Mass Spectrometry in Combination With Gel Electrophoresis: a New Strategy for Speciation of Metal Binding Serum Proteins. Spectrochim. Acta, Part B 1998 , 53B, 339-345. 

    Article  Google Scholar 

  81.  Chery CC; Moens L; Cornelis R; Vanhaecke F: Capabilities and Limitations of Gel Electrophoresis for Elemental Speciation: a Laboratory’s Experience. Pure and Applied Chemistry 2006, 78, 91-103. 

    Article  CAS  Google Scholar 

  82.  Benninghoven A: Developments in Secondary Ion Mass Spectroscopy and Applications to Surface Studies. Surface Science 1975, 53, 596-625. 

    Article  CAS  Google Scholar 

  83.  Pachuta SJ; Cooks RG: Mechanisms in Molecular SIMS. Chemical Reviews 1987 , 87, 647-669. 

    Article  CAS  Google Scholar 

  84. Benninghoven A; Werner HW; Rudenauer FG: Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends; Benninghoven A, (Hrsg.); Wiley Interscience: New York, 1987 .

    Google Scholar 

  85.  Briggs D; Brown A; Vickerman JC: Handbook of Static Secondary Ion Mass Spectrometry; Wiley: Chichester, 1989 .

    Google Scholar 

  86.  Arnot FL; Beckett C: Formation of Negative Ions at Surfaces. Nature 1938 , 141, 1011-1012. 

    Article  CAS  Google Scholar 

  87.   Arnot FL; Milligan JC: A New Process of Negative-Ion Formation. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences 1936 , 156, 538-560. 

    Google Scholar 

  88.  Herzog RFK; Viehbock FP: Ion Source for Mass-Spectrography. Physical Review 1949, 76, 855-856. 

    Article  CAS  Google Scholar 

  89.  Benninghoven A: Mechanism of Ion Formation and Ion Emission During Sputtering. Zeitschrift fur Physik 1969 , 220, 159-180. 

    Article  CAS  Google Scholar 

  90.  Benninghoven A: Analysis of Monomolecular Surface Layers of Solids  by Secondary Ion Emission. Zeitschrift fuer Physik 1970, 230, 403-417. 

    Article  CAS  Google Scholar 

  91.  Adams F: Analytical Atomic Spectrometry and Imaging: Looking Backward From 2020 to 1975. Spectrochimica Acta, Part B: Atomic Spectroscopy 2008, 63B, 738-745. 

    Article  CAS  Google Scholar 

  92.  Benninghoven A; Sichtermann WK: Detection, Identification and Structural Investigation of Biologically Important Compounds by Secondary Ion Mass Spectrometry. Anal. Chem. 1978, 50,1180-1184. 

    Article  CAS  Google Scholar 

  93.  Coath CD; Long JVP: A High-Brightness Duoplasmatron Ion Source for Microprobe Secondary-Ion Mass Spectrometry. Review of Scientific Instruments 1995, 66,1018-1023. 

    Article  CAS  Google Scholar 

  94.  Konarski P; Kalczuk M; Koscinski J: Bakeable Duoplasmatron Ion Gun for SIMS Microanalysis. Review of Scientific Instruments 1992, 63, 2397-2399. 

    Article  CAS  Google Scholar 

  95. Pacholski ML; Winograd N: Imaging With Mass Spectrometry. Chemical Reviews 1999, 99, 2977-3005. 

    Article  CAS  Google Scholar 

  96. Shimizu N: Principles of SIMS and Modern Ion Microprobes, in Modern Analytical Geochemistry, Robin Gill, (Hrsg.); Addison Wesley Longman: Harlow, 1997 ; Kap. 15, 235-242. 

    Google Scholar 

  97.  Weibel D; Wong S; Lockyer N; Blenkinsopp P; Hill R; Vickerman JC: A C60 Primary Ion Beam System for Time of Flight Secondary Ion Mass Spectrometry: Its Development and Secondary Ion Yield Characteristics. Anal. Chem. 2003, 75,1754-1764. 

    Article  CAS  Google Scholar 

  98.  Chait BT; Standing KG: A Time-of-Flight Mass Spectrometer for Measurement of Secondary Ion Mass Spectra. Int. J. Mass Spectrom. Ion Phys. 1981, 40, 185-193. 

    Article  CAS  Google Scholar 

  99.  Standing KG; Chait BT; Ens W; McIntosh G; Beavis R: Time-of-Flight Measurements of Secondary Organic Ions Produced by 1 keV to 16 keV Primary Ions. Nuclear Instruments & Methods in Physics Research 1982, 198, 33-38. 

    Article  CAS  Google Scholar 

  100.  Jabs HU; Assmann G; Greifendorf D; Benninghoven A: High Performance Liquid Chromatography and Time-of- Flight Secondary Ion Mass Spectrometry: a New Dimension in Structural Analysis of Apolipoproteins. Journal of Lipid Research 1986, 27, 613-621. 

    CAS  Google Scholar 

  101.  Ens W; Standing KG; Chait BT; Field FH: Comparison of Mass Spectra Obtained With Low-Energy Ion and High-Energy 252 Californium Fission Fragment Bombardment. Anal. Chem. 1981, 53, 1241-1244. 

    Article  CAS  Google Scholar 

  102.  Lafortune F; Beavis R; Tang X; Standing KG; Chait BT: Narrowing the Gap Between KeV and Fission Fragment Secondary Ion Yields With Nitrocellulose. Rapid Commun. Mass Spectrom. 1987, 1,114-116. 

    Article  CAS  Google Scholar 

  103.  Ens W; Main DE; Standing KG; Chait BT: Comparison of Relative Quasi-Molecular Ion Yields for 8-keV Ion and 252Cf Fission Fragment Bombardment. Anal. Chem. 1988, 60, 1494-1498. 

    Article  CAS  Google Scholar 

  104.  Olthoff JK; Honovich JP; Cotter RJ: Liquid Secondary Ion Time-of-Flight Mass Spectrometry. Anal. Chem. 1987, 59,999-1002. 

    Article  CAS  Google Scholar 

  105.  Linton RW; Mawn MP; Belu AM; DeSimone JM; Hunt MO, Jr.; Menceloglu YZ; Cramer HG; Benninghoven A: Time- of-Flight Secondary Ion Mass Spectrometric Analysis of Polymer Surfaces and Additives. Surface and Interface Analysis 1993, 20, 991-999. 

    Article  CAS  Google Scholar 

  106.  Galuska AA: ToF-SIMS Determination of Molecular Weights From Polymeric Surfaces and Microscopic Phases. Surface and Interface Analysis 1997, 25, 790-798. 

    Article  CAS  Google Scholar 

  107.  Bullett NA; Short RD; O’Leary T; Beck AJ; Douglas CWI; Cambray-Deakin M; Fletcher IW; Roberts A; Blomfield C: Direct Imaging of Plasma-Polymerized Chemical Micropatterns. Surface and Interface Analysis 2001, 31, 1074-1076. 

    Article  CAS  Google Scholar 

  108.  Liu S; Weng LT; Chan CM; Li L; Ho NK; Jiang M: Quantitative Surface Characterization of Poly(Styrene)/Poly(4- Vinyl Phenol) Random and Block Copolymers by ToF-SIMS and XPS. Surface and Interface Analysis 2001, 31,745-753. 

    Article  CAS  Google Scholar 

  109.  Medard N; Poleunis C; Vanden Eynde X; Bertrand P: Characterization of Additives at Polymer Surfaces by TOF-SIMS. Surface and Interface Analysis 2002, 34,565-569. 

    Article  CAS  Google Scholar 

  110.  Davies N; Weibel DE; Blenkinsopp P; Lockyer N; Hill R; Vickerman JC: Development and Experimental Application of a Gold Liquid Metal Ion Source. Applied Surface Science 2003, 203-204, 223-227. 

    Google Scholar 

  111.  Nagy G; Walker AV: Enhanced Secondary Ion Emission With a Bismuth Cluster Ion Source. Int. J. Mass Spectrom. 2007, 262,144-153. 

    Article  CAS  Google Scholar 

  112.  Touboul D; Kollmer F; Niehuis E; Brunelle A; Laprevote O: Improvement of Biological Time-of-Flight-Secondary Ion Mass Spectrometry Imaging With a Bismuth Cluster Ion Source. J. Am. Soc. Mass Spectrom. 2005, 16, 1608-1618. 

    Article  CAS  Google Scholar 

  113.  Malmberg P; Nygren H: Methods for the Analysis of the Composition of Bone Tissue, With a Focus on Imaging Mass Spectrometry (TOF-SIMS ). Proteomics 2008, 8, 3755-3762. 

    Article  CAS  Google Scholar 

  114.  Wong SCC; Hill R; Blenkinsopp P; Lockyer NP; Weibel DE; Vickerman JC: Development of a C60 + Ion Gun for Static SIMS and Chemical Imaging. Applied Surface Science 2003, 203-204, 219-222. 

    Article  CAS  Google Scholar 

  115.  Fletcher JS; Lockyer NP; Vickerman JC: C60, Buckminsterfullerene: Its Impact on Biological ToF-SIMS Analysis. Surface and Interface Analysis 2006, 38, 1393-1400. 

    Article  CAS  Google Scholar 

  116.  Mas S; Perez R; Martinez-Pinna R; Egido J; Vivanco F: Cluster TOF-SIMS Imaging: a New Light for in Situ Metabolomics? Proteomics 2008, 8, 3735-3745. 

    Article  CAS  Google Scholar 

  117.  Briggs D; Hearn MJ: Analysis of Polymer Surfaces by SIMS. Part 5. The Effects of Primary Ion Mass and Energy on Secondary Ion Relative Intensities. Int. J. Mass Spectrom. Ion Proc. 1985, 67, 47-56. 

    Article  CAS  Google Scholar 

  118.  Brunelle A; Laprevote O: Lipid Imaging With Cluster Time-of-Flight Secondary Ion Mass Spectrometry. Anal. Bioanal. Chem. 2009, 393, 31-35. 

    Article  CAS  Google Scholar 

  119.  Herrmann AM; Ritz K; Nunan N; Clode PL; Pett-Ridge J; Kilburn MR; Murphy DV; O’Donnell AG; Stockdale EA: Nano- Scale Secondary Ion Mass Spectrometry - A New Analytical Tool in Biogeochemistry and Soil Ecology: A Review Article. Soil Biology & Biochemistry 2007, 39, 1835-1850. 

    Article  CAS  Google Scholar 

  120.  Fletcher JS; Rabbani S; Henderson A; Blenkinsopp P; Thompson SP; Lockyer NP; Vickerman JC: A New Dynamic in Mass Spectral Imaging of Single Biological Cells. Anal. Chem. 2008, 80,9058-9064. 

    Article  CAS  Google Scholar 

  121.  Carado A; Passarelli MK; Kozole J; Wingate JE; Winograd N; Loboda AV: C60Secondary Ion Mass Spectrometry With a Hybrid-Quadrupole Orthogonal Time-of- Flight Mass Spectrometer. Anal. Chem. 2008, 80, 7921-7929. 

    Article  CAS  Google Scholar 

  122.  Nelson DE; Korteling RG; Stott WR: Carbon-14: Direct Detection at Natural Concentrations. Science 1977, 198, 507-508. 

    Article  CAS  Google Scholar 

  123.  Bennett CL; Beukens RP; Clover MR; Grove HE; Liebert RB; Litherland AE; Purser KH; Sondheim WE: Radiocarbon Dating Using Electrostatic Accelerators: Negative Ions Provide the Key. Science 1977, 198, 508-510. 

    Article  CAS  Google Scholar 

  124.  Lappin G; Garner RC: Current Perspectives of 14C-Isotope Measurement in Biomedical Accelerator Mass Spectrometry. Anal. Bioanal. Chem. 2004 , 378, 356-364. 

    Article  CAS  Google Scholar 

  125.  Hellborg R; Skog G: Accelerator Mass Spectrometry. Mass Spectrom. Rev. 2008 , 27, 398-427. 

    Article  CAS  Google Scholar 

  126.  Brown K; Dingley KH; Turteltaub KW: Accelerator Mass Spectrometry for Biomedical Research. Methods in Enzymology 2005, 402, 423-443. 

    Article  CAS  Google Scholar 

  127.  Ikeda T: Instruments for Radiation Measurement in Life Sciences. VI. Use of Accelerator Mass Spectrometry in Studies on Drug Metabolism and Pharmacokinetics. Radioisotopes 2005 , 54, 15-21. 

    Article  CAS  Google Scholar 

  128.  Brown K; Tompkins EM; White INH: Applications of Accelerator Mass Spectrometry for Pharmacological and Toxicological Research. Mass Spectrom. Rev. 2006, 25, 127-145. 

    Article  CAS  Google Scholar 

  129.  Suter M: 25 Years of AMS - a Review of Recent Developments. Nucl. Instrum. Methods Phys. Res. , Sect. B 2004, 223-224, 139-148. 

    Google Scholar 

  130.  Stocker M; Doebeli M; Grajcar M; Suter M; Synal HA; Wacker L: A Universal and Competitive Compact AMS Facility. Nucl. Instrum. Methods Phys. Res. , Sect. B 2005, 240, 483-489. 

    Article  CAS  Google Scholar 

  131.  Wacker L; Fifield LK; Olivier S; Suter M; Synal HA: Compact Accelerator Mass Spectrometry: a Powerful Tool to Measure Actinides in the Environment. Special Publications of the Royal Society of Chemistry 2006, 305, 44-46. 

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2013). Anorganische Massenspektrometrie. In: Massenspektrometrie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-8274-2981-0_15

Download citation

Publish with us

Policies and ethics