Skip to main content

Atemsystem

  • Chapter
  • 12k Accesses

Zusammenfassung

Insekten sind primär landlebende Tiere, deren cuticulares Exoskelett vor Verdunstung und eindringendem Wasser schützt. Die mit einer Wachsschicht bedeckte Cuticula ist als Oberfläche für den Atemgasaustausch prinzipiell ungeeignet. Nur wenn sie membranös und ohne wasserabweisende Wachsschicht ist, ermöglicht sie einen Gasaustausch. Diese Bedingungen sind nur bei einigen in feuchtem Milieu lebenden Kleinformen und einigen Larvenstadien erfüllt, die über die Haut oder mit Kiemen atmen. Zur Atemgasversorgung besitzen Insekten in der Regel ein von seitlichen Öffnungen der Körperoberfläche, den Stigmen, ausgehendes Röhrensystem, das Tracheensystem. Durch seine Verzweigungen bietet es eine große innere Oberfläche. Über die feinsten Enden, die Tracheolen, leitet es die Atemluft gasförmig zu den Geweben, z. T. bis in die Zellen hinein. Der Sauerstofftransport erfolgt somit weitgehend ohne Vermittlung der Hämolymphe. Respiratorische Pigmente gibt es nur bei einigen Spezialisten, die sekundär unter extrem sauerstoffarmen Bedingungen im Wasser oder als Endoparasiten leben.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Bailey, L. (1954): The respiratory currents in the tracheal system of the adult honeybee. J. Exp. Biol. 31: 589–593

    CAS  Google Scholar 

  • Bartholomew, G. A., Casey, T. M: (1978): Oxygen consumption of moths during rest, preflight warm up, and flight in relation to body size and wing morphology. J. exp. Biol. 76: 11–25

    Google Scholar 

  • Baudet, J. L., Sellier, E. (1975): Recherches sur l’appareil respiratoire des Blattes. II. — Les vésiculations trachéennes et leur évolution dans le sousordre des Blattaria. Ann. Soc. Ent. France (N.S.) 11: 481–89

    Google Scholar 

  • Farley, R. D., Case, J. F., Roeder, K. D. (1967): Pacemaker for tracheal ventilation in the cockroach, Periplaneta americana (L.). J. Insect Physiol. 13: 1713–1728

    Article  PubMed  CAS  Google Scholar 

  • Faucheux, M.J. (1973): Recherches sur l’appareil respiratoire des Diptères adultes II-Calliphora erythrocephala (Cyclorrhapha Calliphoridae). Ann. Soc.ent. Fr. (N.S.) 9(2): 413–431

    Google Scholar 

  • Hinton, H. E. (1968): Spiracular gills. Adv. Insect Physiol. 5: 65–162

    Article  Google Scholar 

  • Imms, A. D. (1925): A general textbook of Entomology. Chapman and Hall, London

    Google Scholar 

  • Kestler, P. (1984): Respiration and respiratory water loss. In: Hoffman, K. H. (ed): Environmental Physiology and Biochemistry of Insects. 137–183. Springer, Berlin, Heidelberg

    Google Scholar 

  • Komai, Y. (1998): Augmented respiration in a flying insect. J. Exp. Biol. 201: 2359–2366

    PubMed  Google Scholar 

  • Lewis, G.W., Miller P.L., Mills P.S. (1973): Neuromuscular mechanisms of abdominal pumping in the locust. J. Exp. Biol. 59: 149–168

    Google Scholar 

  • Lighton, J.R. (1994): Discontinuous ventilation in terrestrial insects. Physiol. Zool. 67: 142–162

    Google Scholar 

  • Locke, M. (1998): Caterpillars have evolved lungs for hemocyte gas exchange. J. Insect Physiol. 44: 1–20

    Article  CAS  Google Scholar 

  • Loudon, C. (1989): Tracheal hypertrophy in mealworms: Design plasticity in oxygen supply systems. J. Exp. Biol. 147: 217–235

    Google Scholar 

  • Mill, P.J. (1985): Structure and physiology of the respiratory system. In: Kerkut, G. A. and Gilbert, L. I. (eds.) Comprehensive Insect Physiology, Biochemistry and Pharmacology 3: 517–593. Pergamon, Oxford, New York

    Google Scholar 

  • Miller, P. L. (1960): Respiration in the desert locust III, ventilation and the spiracles during flight. J. Exp. Biol. 37: 264–278

    Google Scholar 

  • Miller, P.L. (1981): Ventilation in active and inactive insects. In: Herreid, C.F., Fourtner, C.R. (eds.): Loco? motion and energetics in arthropods. 317–390, Plenum, New York

    Google Scholar 

  • Myers T.B., Retzlaff, E. (1963): Localization and action of the respiratory centre of the Cuban burrowing cockroach. J. Insect. Physiol. 9: 607–614

    Article  Google Scholar 

  • Nardi, J.B. (1984): Tracheole migration in an insect wing, Roux’s Archives 194: 1–8

    Article  Google Scholar 

  • Snodgrass, R.E. (1956): Anatomy of the Honey Bee. Comstock, Ithaca, New York

    Google Scholar 

  • Thorpe, W.H., Crisp, D.J. (1947): Studies on plastron respiration. I. The biology of Aphelocheirus (Hemiptera, Aphelocheiridae (Naucoridae) and the mechanism of plastron respiration. J. Exp. Biol. 24: 227–269

    PubMed  CAS  Google Scholar 

  • Wasserthal, L.T. (1996) Interaction of circulation and tracheal ventilation in holometabolous insects. Advances Insect Physiol. 26: 297–351

    Article  Google Scholar 

  • Wasserthal, L.T. (2001): Flight motor driven respiratory air flow in the hawkmoth Manduca sex ta. J. Exp. Biol. 204: 2209–2220

    PubMed  CAS  Google Scholar 

  • Wasserthal, L.T. (2003): Respiratory system. In: Kristensen, N. P. (ed.): Handbook of Zoology. Lepidoptera, Moths and Butterflies. 4/2. de Gruyter, Berlin, New York, in press

    Google Scholar 

  • Weis-Fogh, T. (1964a). Functional design of the tracheal system of flying insects as compared with the avian lung. J. Exp. Biol. 41: 207–227

    CAS  Google Scholar 

  • Weis-Fogh, T. (1964b). Diffusion in insect wing muscle, the most active tissue known. J. Exp. Biol. 41: 229–256

    PubMed  CAS  Google Scholar 

  • Weis-Fogh, T. (1967). Respiration and tracheal ventilation in locusts and other flying insects. J. Exp. Biol. 47: 561–587

    PubMed  CAS  Google Scholar 

  • Wigglesworth, V.B., Lee, W.M. (1982): The supply of oxygen to the flight muscles of insects: A theory of tracheole physiology. Tissue and Cell 14: 501–518

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth, V.B., (1983) The physiology of tracheoles. Adv. Insect Physiol. 17: 85–147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Wasserthal, L.T. (2010). Atemsystem. In: Dettner, K., Peters, W. (eds) Lehrbuch der Entomologie. Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2618-5_6

Download citation

Publish with us

Policies and ethics