Skip to main content

Zellbiologische Grundlagen

  • Chapter
Der Experimentator: Zellkultur

Part of the book series: Experimentator ((EXPERIMENTATOR))

  • 21k Accesses

Zusammenfassung

Uber grundlegendes Wissen zu verfugen, ist fur jeden Experimentator essenziell, da man viele Zusammenhange besser durchschauen und nachvollziehen kann sowie praxisrelevante Entscheidungen leichter getroff en werden konnen. Diese Erkenntnisse sind nicht nur fur die Interpretation der mit Zellkulturen gewonnen Ergebnisse von groser Bedeutung, sondern gerade dann, wenn es mal nicht so gut lauft und der Anwender gezwungen ist, eine Fehleranalyse zu machen. Der ≫Experimentator Zellkultur≪ soll bei Problemen helfen, mit denen man sich haufig herumschlagen muss. Um diese Probleme losen zu konnen, muss der Anwender zunachst etwas uber die Grundlagen und den aktuellen Wissensstand auf den jeweiligen Gebieten erfahren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.95
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abraham MC, Shaham S (2004) Death without caspases, caspases without death. Trends in Cell Biology 14(4): 184–193

    Article  PubMed  CAS  Google Scholar 

  • Artandi SE, Attardi LD (2005) Pathways connecting telomeres an p53 in senescence, apoptosis, and cancer. Biochem Biophys Res Comm 331: 881–890

    Article  PubMed  CAS  Google Scholar 

  • Baden HP et al. (1987) NM1 keratinocyte line is cytogenetically and biologically stable and exhibits a unique structural protein. J Invest Dermatol 89(6): 574–579

    Article  PubMed  CAS  Google Scholar 

  • Bond JA et al. (1999) Control of replicative life span in human cells: Barriers to clonal expansion intermediate between M1 senescence and M2 crisis. Mol Cell Biol 19(4): 3103–3114

    PubMed  CAS  Google Scholar 

  • Boukamp P et al. (1998) Normal Keratinization in a Spontaneously Immortalized Aneuploid Human Keratinocyte Cell Line. J Cell Biol 106: 761–771

    Article  Google Scholar 

  • Chautan M et al. (1999) Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 9(17): 967–970

    Article  PubMed  CAS  Google Scholar 

  • Chin L et al. (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97: 527–538

    Article  PubMed  CAS  Google Scholar 

  • Cregan SP et al. (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158(3): 507–517

    Article  PubMed  CAS  Google Scholar 

  • Desmaze C et al. (2003) Telomere-driven genomic instability in cancer cells. Cancer Letters 194: 173–182

    Article  PubMed  CAS  Google Scholar 

  • Doerfler P et al. (2000) Caspase enzyme activity is not essential for apoptosis during thymocyte development. J Immunol 164(8): 4071–4079

    PubMed  CAS  Google Scholar 

  • Ducray C et al. (1999) Telomere dynamics, end-to-end-fusions and telomerase activation during the human fibroblast immortalization process. Oncogene 18: 4211–4223

    Article  PubMed  CAS  Google Scholar 

  • Dürst M et al. (1987) Molecular and cytogenetic analysis of immortalized human papilloma keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene 1(3): 251–256

    PubMed  Google Scholar 

  • Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans, Cell 44: 817–829

    Article  PubMed  CAS  Google Scholar 

  • Fusenig NE et al. (1995) Differentiation and tumor progression. Recent Results Cancer Res 139: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mut Res 256: 271–282

    Article  CAS  Google Scholar 

  • Hayflick L, Moorhead P (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585–621

    Article  PubMed  CAS  Google Scholar 

  • Hemann MT et al. (2001) The Shortest Telomere, Not Average Telomere Length, Is Critical for Cell Viability and Chromosome Stability. Cell 107: 67–77

    Article  PubMed  CAS  Google Scholar 

  • Itahana K et al. (2001) Regulation of cellular senescence by p53. Eur J Biochem 268: 2784–2791

    Article  PubMed  CAS  Google Scholar 

  • Jiang XR et al. (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nature Genetics 21: 111–114

    Article  PubMed  CAS  Google Scholar 

  • Junqueira VB (2004) Aging and oxidative stress. Mol Aspects Med 25: 5–16

    Article  PubMed  CAS  Google Scholar 

  • Kerr JFR et al. (1972) Apoptosis: A basic biological phenomenonwith wide ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    Article  PubMed  CAS  Google Scholar 

  • Krauss G (2001) Biochemistry of Signal Transduction and Regulation. 3. Aufl. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Künstle G et al. (1999) Concanavalin A hepatotoxicity in mice: tumor necrosis factor-mediated organ failure independent of caspase-3-like protease activation. Hepatology 30(5): 1241–1251

    Article  PubMed  Google Scholar 

  • Lang-Rollin IC et al. (2003) Mechanisms of caspase-independent neuronal death: energy depletion and free radical generation. J Neurosci 23(35): 11015–11025

    PubMed  CAS  Google Scholar 

  • Leist M, Jäättelä M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nature Rev Mol Cell Biol 2: 1–10

    Article  Google Scholar 

  • Leist M, Jäättelä M (2001) Triggering of apoptosis by cathepsins. Cell Death Differ 8(4): 324–326

    Article  PubMed  CAS  Google Scholar 

  • Lin Y et al. (2002) The death-promoting activity of p53 can be inhibited by distinct signaling pathways. Blood 100(12): 3990–4000

    Article  PubMed  CAS  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell JE (2001) Molekulare Zellbiologie. 4. Aufl. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Morales CP et al. (1999) Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nature Genetics 21: 115–118

    Article  PubMed  CAS  Google Scholar 

  • Müller-Esterl W (2004) Biochemie. 1. Aufl. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Nakamura H et al. (2002) Establishment of immortal normal and Ataxia Telangiectasia fibroblast cell lines by introduction of the hTERT gene. J Rad Res 43: 167–174

    Article  CAS  Google Scholar 

  • Pelicci PG (2004) Do tumor-suppressive mechanisms contribute to organism aging by inducing stem cell senescence? J Clin Invest 113(1): 4–7

    PubMed  CAS  Google Scholar 

  • Peter ME et al. (1997) Advances in apoptosis research. Proc Natl Acad Sci USA 94: 12736–12737

    Article  PubMed  CAS  Google Scholar 

  • Rambhatla L et al. (2001) Cellular senescence: ex vivo p53- dependent asymmetric cell kinetics. J Biomed Biotech 1(1): 28–37

    Article  CAS  Google Scholar 

  • Reed JC (2000) Mechanisms of Apoptosis. Am J Pathol 157: 1415–1430 ARCH ARTICLE

    Google Scholar 

  • Reed SI (2002) Keeping p27 (Kip1) in the cytoplasm: a second front in cancer's war on p27. Cell Cycle 1(6): 389–390

    Article  PubMed  CAS  Google Scholar 

  • Roach HI, Clarke NM (2000) Physiological cell death of chondrocytes in vivois not confined to apoptosis. J Bone Joint Surg Br 82(4): 601–613

    Article  PubMed  CAS  Google Scholar 

  • Sanford KK, Evans VJ (1982) A quest for the mechanism of »spontaneous« malignant transformation in culture with associated advances in culture technology. J Natl Cancer Inst 68(6): 895–913

    PubMed  CAS  Google Scholar 

  • Smith T et al. (1996) Apoptosis of T cells and macrophages in the central nervous system of intact and adrenalectomized Lewis rats during experimental allergic encephalomyelitis. J Autoimmun 9(2): 167–174

    Article  PubMed  CAS  Google Scholar 

  • Vaziri H, Benchimol S (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 8(5): 279–282

    Article  PubMed  CAS  Google Scholar 

  • Wang J et al. (1998) Myc activates telomerase. Genes & Dev 12: 1769–1774

    Article  CAS  Google Scholar 

  • Wright WE, Shay JW (2000) Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nature Med 6(8): 849–851

    Article  PubMed  CAS  Google Scholar 

  • Wyllie et al. (1980) Cell death: The Significance of Apoptosis. Int Rew Cytology 68: 251–306

    Article  CAS  Google Scholar 

  • Yang J et al. (1999) Human endothelial cell life extension by telomerase expression. J Biol Chemistry 274(37): 26141–26148

    Article  CAS  Google Scholar 

  • Yegorov YE, Zelenin AV (2003) Duration of senescent cell survival in vitroas a characteristic of organism longevity, an additional to the proliferative potential of fibroblasts. FEBS Letters 541: 6–10

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Schmitz, S. (2011). Zellbiologische Grundlagen. In: Der Experimentator: Zellkultur. Experimentator. Spektrum Akademischer Verlag, Heidelberg. https://doi.org/10.1007/978-3-8274-2573-7_2

Download citation

Publish with us

Policies and ethics