Skip to main content

Transformationsmethoden für filamentöse Pilze

  • Chapter
  • 16k Accesses

Zusammenfassung

Filamentöse Pilze sind in dreierlei Hinsicht interessant. Wirtschaftlich betrachtet sind die Gene für die Expression von Amylasen, Proteasen und Lipasen besonders in der Waschmittelindustrie von Bedeutung. Mehr als 40 % aller kommerziell genutzten Enzyme werden mittels filamentöser Pilze produziert. Vor allem die Spezies Aspergillus und Trichoderma kommen zum Einsatz (Lowe, 1992). Sie eignen sich besonders für die Produktion, weil sie in Fermentern wachsen, in der Lage sind, große Mengen Protein herzustellen und weil sie durch die US Amerikanische Food and Drug Administration (FDA) als generally recognized as safe (GRAS) eingestuft werden (Gouka et al., 1997, Archer und Peberdy, 1997, Food Additives List der FDA).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Archer, D.B., Peberdy, J.F. (1997): The Molecular Biology of Secreted Enzyme Production by Fungi. Crit Rev Biotechnol. 17, 273–306.

    Article  PubMed  CAS  Google Scholar 

  • Birch, M., Denning, D.W. (1998): http://www.aspergillus.man.ac.uk/secure/laboratory_protocols/birch.htm

    Google Scholar 

  • Brakhage, A.A. (1998): Molecular Regulation of Beta-Lactam Biosynthesis in Filamentous Fungi. Microbiol Mol Biol Rev. 1998 Sep: 62(3):547–585.

    PubMed  CAS  Google Scholar 

  • Fincham, J.R. (1989): Transformation in Fungi. Microbiological Review 53, 148–170.

    CAS  Google Scholar 

  • Food Additives List, Food and Drug Administration: http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation. cfm?rpt=grasListing.

    Google Scholar 

  • Gouka, R.J., Punt, P.J., van den Hondel, C.A.M.J.J. (1997): Efficient Poduction of Secreted Proteins by Aspergillus. Progress, Limitations and Prospects. Appl. Microbiol. Biotechnol. 47, 11–1.

    Article  Google Scholar 

  • Hinne, A., Hicks, J.B., Fink, G.R. (1978): Transformation of Yeast. Proc. Natl. Acad. Sci. USA 75, 1929–1933.

    Article  Google Scholar 

  • Latgé, J.-P. (1999): Aspergillus fumigates and Aspergillosis. Clin. Microbiol. Rev. 12:310–350.

    PubMed  Google Scholar 

  • Lowe, D.A. (1992): Handbook of Applied Fungal Mycology in: Arora, D.K., Elander, R.P., Mukerji, K.G. (Hrsg.): Fungal Biotechnology (Marcel Dekker, New York) 681–706.

    Google Scholar 

  • Ruiz-Díez, B. (2002): Strategies for the Transformation of Filamentous Fungi. J. Appl. Microbiol. 92, 189–195.

    Article  PubMed  Google Scholar 

Literatur

  • Campbell, E.I., Unkles, S.E., Macro, J.A., van den Hondel, C.A.M.J.J., Contreras, R., Kinghorn, J.R. (1989): Improved Transformation Efficiency of Aspergillus niger Using the Homologous niaD Gene for Nitrate Reductase. Curr. Genet. 16, 53–56.

    Article  PubMed  CAS  Google Scholar 

  • Goosen, T., Bloemheuvel, G., Gysler, C., de Bie, D.A., van den Broek, H.W., Swart, K. (1987): Transformation of Aspergillus niger Using the Homologous Orotidine-5′-Phosphate-Decarboxylase Gene. Curr. Genet. 11, 499–503.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, I.L., Hughes, S.G., Clutterbuck, A.J. (1985): Cloning an Aspergillus nidulans Developmental Gene by Transformation. EMBO J. 4, 1307–1311.

    PubMed  CAS  Google Scholar 

  • Punt, P.J., Oliver, R.P., Dingemanse, M.A., Pouwels, P.H., van den Hondel, C.A. (1987): Transformation of Aspergillus Based on the Hygromycin B Resistance Marker from Escherichia coli. Gene 56, 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Weidner, G., Steffan, B., Brakhage, A.A. (1997): The Aspergillus nidulans lysF Gene Encodes Homoaconitase, an Enzyme Involved in the Fungus-Specific Lysine Biosynthesis Pathway. Mol Gen. Genet. 255, 237–247.

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Kelly, J.M., Hynes, M.J. (1985): Transformation of Aspergillus niger by the amdS Gene of Aspergillus nidulans. EMBO J. 4, 475–479.

    PubMed  CAS  Google Scholar 

Weiterführende Literatur

  • Dhawale, S.S., Marzluf, G.A. (1984): Transformation of Neurospora crassa with Circular and Linear DNA and Analysis of the Fate of the Transforming DNA. Curr. Genet. 10, 205–212.

    Google Scholar 

  • Gruber, F., Visser, J., Kubicek, C.P., de Graaff, L.H. (1990): The Development of a Heterologous Transformation System for the Cellulolytic Fungus Trichoderma reesei Based on a pyrG-Negative Mutant Strain. Curr. Genet. 18, 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, M.J. (1986): Transformation of Filamentous Fungi. Experimental Mycology 10, 1–8.

    Article  Google Scholar 

  • Meyer, V., Mueller, D., Strowig, T., Stahl, U. (2003): Comparison of Different Transformation Methods for Aspergillus giganteus. Curr Genet. 43, 371–377.

    Article  PubMed  CAS  Google Scholar 

  • Mohr, G., Esser, K. (1990): Improved Transformation Frequency and Heterologous Promoter Recognition in Aspergillus niger. Appl. Microbiol. Biotechnol. 34, 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Penttila, M., Nevalainen, H., Ratto, M., Salminen, E., Knowles, J. (1987): A Versatile Transformation System for the Cellulolytic Filamentous Fungus Trichoderma reesei. Gene 61, 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Tilburn, J., Scazzocchio, C., Taylor, G.G., Zabicky-Zissman, J.H., Lockington, R.A., Davies, R.W. (1983): Transformation by Integration in Aspergillus nidulans. Gene 26, 205–221.

    Article  PubMed  CAS  Google Scholar 

  • Unkles, S.E., Campbell, E.I., Carrez, D., Grieve, C., Contreras, R., Fiers, W., van den Hondel, C.A., Kinghorn, J.R. (1989): Transformation of Aspergillus niger with the Homologous Nitrate Reductase Gene. Gene 78, 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Wernars, K., Goosen, T., Wennekes, L.M., Visser, J., Bos, C.J., van den Broek, H.W., van Gorcom, R.F., van den Hondel, C.A., Pouwels, P.H. (1985): Gene Amplification in Aspergillus nidulans by Transformation with Vectors Containing the amdS Gene. Curr. Genet. 9, 361–368.

    Article  PubMed  CAS  Google Scholar 

  • Wernars, K., Goosen, T., Wennekes, L.M., Swart, K., van den Hondel, C.A., van den Broek, H.W. (1987): Cotransformation of Aspergillus nidulans. A Tool for Replacing Fungal Genes. Mol. Gen. Genet. 209, 71–77.

    Article  PubMed  CAS  Google Scholar 

Weiterführende Literatur

  • Armaleo, D., Ye, G.N., Klein, T.M., Shark, K.B., Sanford, J.C., Johnston, S.A. (1990): Biolistic Nuclear Transformation of Saccharomyces cerevisiae and other Fungi. Curr. Genet. 17, 97,003.

    Article  Google Scholar 

  • Barcellos, F.G., Fungaro, M.H., Furlaneto, M.C., Lejeune, B., Pizzirani-Kleiner, A.A., de Azevedo, J.L. (1998): Genetic Analysis of Aspergillus nidulans Unstable Transformants Obtained by the Biolistic Process. Can. J. Microbiol. 44, 1 137,0 141.

    Google Scholar 

  • Davidson, R.C., Cruz, M.C., Sia, R.A., Allen, B., Alspaugh, J.A., Heitman, J. (2000): Gene Disruption by Biolistic Transformation in Serotype D Strains of Cryptococcus neoformans. Fungal Genet. Biol. 29, 38–48.

    Article  PubMed  CAS  Google Scholar 

  • Fungaro, M.H., Rech, E., Muhlen, G.S., Vainstein, M.H., Pascon, R.C., de Queiroz, M.V., Pizzirani-Kleiner, A.A., de Azevedo, J.L. (1995): Transformation of Aspergillus nidulans by Microprojectile Bombardment on Intact Conidia. FEMS Microbiol Lett. 125, 293–297.

    Article  PubMed  CAS  Google Scholar 

  • Te’o, V.S., Bergquist, P.L, Nevalainen, K.M. (2002): Biolistic Transformation of Trichoderma reesei Using the BioRad Seven Barrels Hepta Adaptor System. J. Microbiol. Methods. 51, 393–399.

    Article  CAS  Google Scholar 

  • Viterbo, A., Haran, S., Friesem, D., Ramot, O., Chet, I. (2001): Antifungal Activity of a Novel Endochitinase Gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett. 200, 169,074.

    Article  Google Scholar 

Literatur

  • Beijersbergen A., Dulk-Ras A.D., Schilperoort R.A., Hooykaas P.J. (1992): Conjugative Transfer by the Virulence System of Agrobacterium tumefaciens. Science. 256(5061):1324–7.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M. (1984): Binary Agrobacterium Vectors for Plant Transformation. Nucleic Acids Res. 12, 8711–8721.

    Article  PubMed  CAS  Google Scholar 

  • Bundock, P., den Dulk-Ras, A., Beijersbergen, A., Hooykaas, P.J.J. (1995): Trans-Kingdom T-DNA Transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14, 3206–3214.

    PubMed  CAS  Google Scholar 

  • Chen, X., Stone, M., Schlagnhaufer, C., and Romaine, C.P. (2000): A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66: 4510–4513.

    Article  PubMed  CAS  Google Scholar 

  • de Groot, M.J., Bundock, P., Hooykaas, P.J., Beijersbergen, A.G. (1998): Agrobacterium tumefaciens-Mediated Transformation of Filamentous Fungi. Nat Biotechnol. 16, 839–842.

    Article  PubMed  Google Scholar 

  • Gouka, R.J., Gerk, C., Hooykaas, P.J., Bundock, P., Musters, W., Verrips, C.T., de Groot, M.J. (1999): Transformation of Aspergillus awamori by Agrobacterium tumefaciens-Mediated Homologous Recombination. Nat Biotechnol. 17, 598–601.

    Article  PubMed  CAS  Google Scholar 

  • Michielse, C.B., Ram, A.F., Hooykaas, P.J., Hondel, C.A. (2004): Role of Bacterial Virulence Proteins in Agrobacterium-Mediated Transformation of Aspergillus awamori. Fungal Genet Biol. 41, 571–578.

    Article  PubMed  CAS  Google Scholar 

  • Rho, H.S., Kang, S., Lee, Y.H. (2001): Agrobacterium tumefaciens-Mediated Transformation of the Plant Pathogenic Fungus, Magnaporthe grisea. Mol. Cells. 12, 407–411.

    PubMed  CAS  Google Scholar 

  • Takken, F.L., Van Wijk, R., Michielse, C.B., Houterman, P.M., Ram, A.F., Cornelissen, B.J. (2004): A One-Step Method to Convert Vectors into Binary Vectors Suited for Agrobacterium-mediated Transformation. Curr Genet. 45:242–248.

    Article  PubMed  CAS  Google Scholar 

  • Zeilinger, S. (2004): Gene Disruption in Trichoderma atroviride via Agrobacterium-Mediated Transformation. Curr Genet. 45, 54–60.

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Brown, J.S., Aufauvre-Brown, A., Holden, D. (1998): Insertional Mutagenesis of Aspergillus fumigates. Mol. Gen. Genet. 259, 327–335.

    Article  PubMed  CAS  Google Scholar 

  • Beijersbergen, A., Den Dulk-Ras, A., Schilpertoort, R.A., Hooykaas, P.J.J. (1992): Conjunctive Transfer by the Virulence System of Agrobacterium tumefaciens. Science 256, 1324–1327.

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty, B.N., Patterson, N.A., Kapoor, M. (1991): An Electroporation-Based System for High-Efficiency Transformation of Germinated Conidia of Filamentous Fungi. Can. J. Microbiol. 37, 858–863.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R.H., de Serres, F.J. (1970): Genetic and Microbiological Research Techniques for Neurospora crassa. Methods Enzymol. 17, 79–143

    Article  Google Scholar 

  • Margolin, B.S., Freitag, M., Selker, E.U. (1997): Improved Plasmids for Gene Targeting at the his-3 Locus of Neurospora crassa by Electroporation. Fungal Genet. Newsl. 44, 34–36.

    Google Scholar 

  • Ozeki, K., Kyoya, F., Hizume, K., Kanda, A., Hamachi, M., Nunmawa, Y. (1994): Transformation of Intact Aspergillus niger by Electroporation. Biosci. Biotech. Biochem. 58, 2224–2227.

    Article  CAS  Google Scholar 

  • Sanchez, O., Aguirre, J. (1996): Efficient Transformation of Aspergillus nidulans by Electroporation of Germinated Conidia. Fungal Genet. Newsl. 43, 48–51.

    Google Scholar 

  • Turner, G.E., Jiminez, T.J., Chae, A.K., Rudeina, A.B., Borkovich, K.A. (1997): Utilization of the Aspergillus nidulans pyrG Gene as a Selectable Marker for Transformation and Electroporation of Neurospora crassa. Fungal Genet. Newsl. 44, 57–59.

    Google Scholar 

  • Vogel, H.J. (1956): A Convenient Growth Medium for Neurospora (Medium N). Microbial Genetics Bulletin 13, 42–43.

    Google Scholar 

  • Vann, D.C. (1995): Electroporation-Based Transformation of Freshly Harvested Conidia of Neurospora crassa. Fungal Genet. Newsl. 42A, 53.

    Google Scholar 

  • Weidner, G., d’Enfert, C., Koch, A., Mol, P., Brakhage, A.A. (1998): Development of a Homologous Transformation System for the Human Pathogenic Fungus Aspergillus fumigates Based on the pyrG Gene Encoding Orotidine Monophosphate Decarboxylase. Curr. Genet. 33, 378–385.

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Al-Samarrai, T.H., Schmid, J. (2000): A Simple Method for Extraction of Fungal Genomic DNA. Lett. Appl. Microbiol. 30, 53–56.

    Article  PubMed  CAS  Google Scholar 

  • Bainbridge, B.W., Spreadbury, C.L., Scalise, F.G., Cohen, J. (1990): Improved Methods for the Preparation of High Molecular Weight DNA from Large and Small Scale Cultures of Filamentous Fungi. FEMS Microbiol. Lett. 54, 113–117.

    Article  PubMed  CAS  Google Scholar 

  • Brakhage, A.A., Van den Brulle, J. (1995): Use of Reporter Genes to Identify Recessive Trans-Acting Mutations Specifically Involved in the Regulation of Aspergillus nidulans Penicillin Biosynthesis Genes. J. Bacteriol. 177, 2781–2788.

    PubMed  CAS  Google Scholar 

  • Cassago, A., Panepucci, R., Baiao, A., Henrique-Silva, F. (2002): Cellophane Based Mini-Prep Method for DNA Extraction from the Filamentous Fungus Trichoderma reesei. BMC Microbiol. 18, 14.

    Article  Google Scholar 

  • Cenis, J.L. (1992): Rapid Extraction of Fungal DNA for PCR Amplification. Nucleic Acids Res. 20, 2380.

    Article  PubMed  CAS  Google Scholar 

  • Challen, M.P., Moore, A.J., Martinez-Carrera, D. (1995): Facile Extraction and Purification of Filamentous Fungal DNA. Biotechniques 18, 975–978.

    PubMed  CAS  Google Scholar 

  • de Graaff, L., van den Broek, H., Visser, J. (1988): Isolation and Transformation of the Pyruvate Kinase Gene of Aspergillus nidulans. Curr. Genet. 13, 315–321.

    Article  PubMed  Google Scholar 

  • Raeder, U., Broda, P. (1985): Rapid Preparation of DNA from Filamentous Fungi. Lett. Appl. Microbiol. 1, 17–20.

    Article  CAS  Google Scholar 

  • Specht, C.A., DiRusso, C.C., Novotny, C.P., Ullrich, R.C. (1982): A Method for Extracting High-Molecular-Weight Deoxyribonucleic Acid from Fungi. Anal. Biochem. 119, 158–163. http://www.aspergillus.man.ac.uk/indexhome.htm?secure/laboratory_protocols/ http://www.fgsc.net/methods/fgnmthds.html

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Monika Jansohn Sophie Rothhämel

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Tappe, H. (2012). Transformationsmethoden für filamentöse Pilze. In: Jansohn, M., Rothhämel, S. (eds) Gentechnische Methoden. Spektrum Akademischer Verlag, Heidelberg. https://doi.org/10.1007/978-3-8274-2430-3_13

Download citation

Publish with us

Policies and ethics