Skip to main content

Part of the book series: Experimentator ((EXPERIMENTATOR))

  • 10k Accesses

Auszug

Wenn man schließlich einen neuen Klon gefunden hat, ist der nächste Schritt die Analyse. Die kann man unterschiedlich weit treiben, je nachdem, wie viel Zeit und Energie zu investieren man gewillt ist. Die einfachste Variante ist die Kartierung mittels Restriktionsfragmentanalyse (Restriktionskartierung). Die DNA wird dazu mit verschiedenen Restriktionsenzymen — einzeln und paarweise — verdaut, im Agarosegel getrennt und die resultierenden Fragmentgrößen bestimmt (s. Abb. 45). Die einzelnen Fragmente miteinander zu kombinieren, bis man eine verlässliche Restriktionskarte seines Klons in Händen hält, gleicht einem Puzzle, und bei DNAs von über 10 kb Länge bedarf es schon einiger kombinatorischer Intelligenz, um die Stückchen zu einem sinnvollen Ganzen zusammenzusetzen, aber die Analyse ist recht flott — Verdau und Gel lassen sich problemlos in einem halben Tag erledigen — und verschafft einem für den Anfang eine gute Vorstellung davon, womit man es überhaupt zu tun hat.Wenn man das Gel zusätzlich blottet und mit einer passenden, bekannten Sonde hybridisiert, kann man sich weitere Informationen verschaffen, anhand derer man auch längere Klone charakterisieren kann, das dauert dann allerdings etwas länger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Literatur

Literatur

  • Hardin SH, Jones LB, Homayouni R, McCollum JC (1996) Octamer-primed cycle sequencing: design of an optimized primer library. Genome Res. 6, 545–550.

    Article  PubMed  CAS  Google Scholar 

  • Jones LB, Hardin SH (1998) Octamer-primed cycle sequencing using dye-terminator chemistry. Nucl. Acids Res. 26, 2824–2826

    Article  PubMed  CAS  Google Scholar 

  • Ball S, Reeve MA, Robinson PS, Hill F, Brown DM, Loakes D (1998) The use of tailed octamer primers for cycle sequencing. Nucl. Acids Res. 26, 5225–5227

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Sokolov BP (1990) Primer extension technique for the detection of single nucleotide in genomic DNA. Nucl. Acids Res. 18, 3671

    Article  PubMed  CAS  Google Scholar 

  • Pastinen T et al. (1997) Minisequencing: a specific tool for DNA analysis and diagnosis on oligonucleotide arrays. Genome Res. 7, 606–614

    PubMed  CAS  Google Scholar 

  • Syvänen A-C (1999) From gels to chips:“Minisequencing”primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum. Mutat. 13, 1–10

    Article  PubMed  Google Scholar 

Literatur

  • Nyren P, Pettersson B, Uhlen M (1993) Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Anal. Biochem. 208, 171–175

    Article  PubMed  CAS  Google Scholar 

  • Ronaghi M et al. (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 242, 84–89

    Article  PubMed  CAS  Google Scholar 

  • Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281, 363–365

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Biémont C., Vieira C. (2006) Genetics: junk DNA as an evolutionary force. Nature 443, 521–524

    Article  PubMed  Google Scholar 

  • Green RE et al. (2006) Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336

    Article  PubMed  CAS  Google Scholar 

  • Lander ES et al. (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921

    Article  PubMed  CAS  Google Scholar 

  • Levy S, Sutton G et al. (2007) The Diploid Genome Sequence of an Individual Human. PLoS Biol. 5, e254. doi:10.1371/journal.pbio.0050254

    Article  PubMed  Google Scholar 

  • Margulies M et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380

    PubMed  CAS  Google Scholar 

  • Venter JC et al. (2001) The sequence of the human genome. Science, 291, 1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DA et al. (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Chan EY (2005) Advances in sequencing technology. Mutat.Res. 573, 13–40

    PubMed  CAS  Google Scholar 

  • Deamer DW, Akeson M (2000) Nanopores and nucleic acids: prospects for ultrarapid sequencing. Trends Biotechol. 18, 147–151

    Article  CAS  Google Scholar 

  • Jett JH et al. (1989) High-speed DNA sequencing: an approach based upon fluorescence detection of single molecules. J.Biomol.Struct.Dyn. 7, 301–309

    PubMed  CAS  Google Scholar 

  • Ju J et al. (2006) Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc.Natl.Acad.Sci. USA 103, 19635–19640

    Article  PubMed  CAS  Google Scholar 

  • Shendure J et al. (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Sogin ML et al. (2006) Microbial diversity in the deep sea and the underexplored“rare biosphere”. Proc.Natl. Acad.Sci. USA 103, 12115–12120

    Article  PubMed  CAS  Google Scholar 

  • Venter JC et al. (2004) Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science 304, 66–74

    Article  PubMed  CAS  Google Scholar 

  • Sultan M et al. (2008) A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome. Science (published online, 3. Juli 2008) DOI: 10.1126/science.1160342

    Google Scholar 

Literatur

  • Orita M et al. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Adac. Sci USA 86, 2766–2770

    Article  CAS  Google Scholar 

  • Orita M et al. (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879

    Article  PubMed  CAS  Google Scholar 

  • Yap EPH, McGee JOD (1992) Nonisotopic SSCP detection in PCR products by ethidium bromide staining. Trends Genet. 8, 49

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Yandell DW (1993) How sensitive is PCR-SSCP? Hum. Mutat. 2, 338–346

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Sekiya T, Hayashi K (1991) Allele-specific polymerase chain reaction: a method for amplification and sequence determination of a single component among a mixture of sequence variants. Anal. Biochem. 192, 82–84.

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Fischer SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: Correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80, 1579–1583

    Article  PubMed  CAS  Google Scholar 

  • Borresen A-L et al. (1991) Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc. Natl. Acad. Sci. USA 88, 8405–8409

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Riesner D et al. (1989) Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis 10, 377–389

    Article  PubMed  CAS  Google Scholar 

  • Wiese U et al. (1995) Scanning for mutations in the human prion protein open reading frame by temporal temperature gradient gel electrophoresis. Electrophoresis 16, 1851–1860

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Zimmermann PA, Carrington MN, Nutman TB (1993) Exploiting structural differences among heteroduplex molecules to simplify genotyping the DQA1 and DQB1 alleles in human lymphocyte typing. Nucl. Acids Res. 21, 4541–4547

    Article  Google Scholar 

  • D’Amato M, Sorrentino R (1995) Short insertions in the partner strands greatly enhance the discriminating power of DNA heteroduplex analysis: resolution of HLA-DQB1 polymorphisms. Nucl. Acids Res. 23, 2078–2079.

    Article  PubMed  Google Scholar 

Literatur

  • Babon J, Youil R, Cotton RGH (1995) Improved strategy for mutation detection — a modification to the enzyme mismatch cleavage method. Nucl. Acids Res. 23, 5082–5084

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Roest PA et al. (1993) Protein truncation test (PTT) for rapid detection of translation-terminating mutations. Hum. Mol. Genet. 2, 1719–1721

    Article  PubMed  CAS  Google Scholar 

  • Hogervorst FBL (1997) Promega Notes 62, 7

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

(2009). DNA-Analyse. In: Der Experimentator: Molekularbiologie/ Genomics. Experimentator. Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2158-6_8

Download citation

Publish with us

Policies and ethics