Skip to main content

Mikroelektrodenableitung in der funktionellen Neurochirurgie

  • Chapter
Tiefe Hirnstimulation

Zusammenfassung

Das Interesse an Mikroelektrodenableitungen bei funktioneilen stereotaktischen Eingriffen nimmt zu. Zum einen wird die Einzelzellableitung von vielen zur genaueren Eingrenzung des Zielpunktes bei Patienten mit Bewegungsstörungen für notwendig erachtet [5, 12, 42, 52, 81, 100, 113], zum anderen eröffnet sich hierdurch die Möglichkeit neue Erkenntnisse über die Pathophysiologie verschiedener Erkrankungen der Basalganglien beim Menschen zu gewinnen. Mit der zunehmenden Anzahl von Kliniken, welche die tiefe Hirnstimulation bei Patienten mit fortgeschrittener Parkinsonerkrankung anwenden, ist auch die Zahl der Mikroelektrodenableitungen gewachsen. Die Mikroelektrodenableitung wurde erstmals vor mehr als 40 Jahren von Albe-Fessard und Guiot [2, 25] in die stereotaktische funktioneile Neurochirurgie eingeführt. Seitdem hat sich die grundlegende Technik der extrazellulären Ableitung relativ wenig verändert. Es liegen detaillierte Beschreibungen über die prinzipiellen technischen Aspekte vor, aber auch über die Charakteristika der Ableitungen von den jeweiligen Zielstrukturen im Thalamus [46, 101, 102, 103], im Globus pallidus [65] und im Nucleus subthalamicus (STN) [1, 88, 107].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abosch A, Hutchison WD, Saint-Cyr JA, Dostrovsky JO, Lozano AM (2002) Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease. J Neurosurg 97:1167–1172

    Article  PubMed  Google Scholar 

  2. Albe-Fessard D, Hard J, Vourch G, Hertzog E, Aleonard P, Derome P (1962) Derivations d’activites spontanees et evoquees dans les structures cerebrales profondes de l’homme. Rev Neurol 106:89–105

    Google Scholar 

  3. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  CAS  Google Scholar 

  4. Albin RL, Young AB, Penney JB (1995) The functional anatomy of disorders of the basal ganglia. Trends Neurosci 18:63–64

    Article  PubMed  CAS  Google Scholar 

  5. Alterman RL, Sterio D, Beric A, Kelly PJ (1999) Microelectrode recording during posteroventral pallidotomy: impact on target selection and complications. Neurosurgery 44:315–321; discussion 321-323

    Article  PubMed  CAS  Google Scholar 

  6. Aosaki T, Kimura M, Graybiel AM (1995) Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J Neurophysiol 73:1234–1252

    PubMed  CAS  Google Scholar 

  7. Apuzzo ML, Chandrasoma PT, Cohen D, Zee CS, Zelman V (1987) Computed imaging stereotaxy: experience and perspective related to 500 procedures applied to brain masses. Neurosurgery 20:930–937

    Article  PubMed  CAS  Google Scholar 

  8. Armonda RA, Carpenter MB (1991) Distribution of cholinergic paludal neurons in the squirrel monkey (Saimiri sciureus) based upon choline acetyltransferase. J Hirnforsch 32:357–367

    PubMed  CAS  Google Scholar 

  9. Bakay RA (2002) Metaanalysis, pallidotomy, and microelectrodes. J Neurosurg 97:1253–1256; author reply 1256

    PubMed  Google Scholar 

  10. Bauswein E, Fromm C, Preuss A (1989) Corticostriatal cells in comparison with pyramidal tract neurons: contrasting properties in the behaving monkey. Brain Res 493:198–203

    Article  PubMed  CAS  Google Scholar 

  11. Bejjani BP, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I et al. (2000) Bilateral subthalamic stimulation for Parkinson’s disease by using threedimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92:615–625

    Article  PubMed  CAS  Google Scholar 

  12. Benazzouz A, Breit S, Koudsie A, Pollak P, Krack P, Benabid AL (2002) Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17(Suppl 3):S145–149

    Article  PubMed  Google Scholar 

  13. Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    PubMed  CAS  Google Scholar 

  14. Bernstein M, Parrent AG (1994) Complications of CT-guided stereotactic biopsy of intra-axial brain lesions. J Neurosurg 81:165–168

    Article  PubMed  CAS  Google Scholar 

  15. Bezard E, Boraud T, Bioulac B, Gross CE (1999) Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms. Eur J Neurosci 11:2167–2170

    Article  PubMed  CAS  Google Scholar 

  16. Cordeau J (1966) Further studies on patterns of central unit activity in relation with tremor. J Neurosurg 25(Suppl II):213–218

    Google Scholar 

  17. Crutcher MD, DeLong MR (1984) Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity. Exp Brain Res 53:244–258

    Article  PubMed  CAS  Google Scholar 

  18. DeLong MR (1971) Activity of paludal neurons during movement. J Neurophysiol 34:414–427

    PubMed  CAS  Google Scholar 

  19. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  PubMed  CAS  Google Scholar 

  20. DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53:530–543

    PubMed  CAS  Google Scholar 

  21. Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142–151

    PubMed  CAS  Google Scholar 

  22. Garonzik IM, Hua SE, Ohara S, Lenz FA (2002) Intraoperative microelectrode and semi-microelectrode recording during the physiological localization of the thalamic nucleus ventral intermediate. Mov Disord 17(Suppl 3):S135–144

    Article  PubMed  Google Scholar 

  23. Giller CA, Dewey RB, Ginsburg MI, Mendelsohn DB, Berk AM (1998) Stereotactic pallidotomy and thalamotomy using individual variations of anatomic landmarks for localization. Neurosurgery 42:56–62; discussion 62-5

    Article  PubMed  CAS  Google Scholar 

  24. Gross RE, Lombardi WJ, Lang AE, Duff J, Hutchison WD, Saint-Cyr JA et al. (1999) Relationship of lesion location to clinical outcome following microelectrode-guided pallidotomy for Parkinson’s disease. Brain 122:405–416

    Article  PubMed  Google Scholar 

  25. Guiot G, Hardy J, Albe-Fessard D (1962) Delimitation precise des structures sous-corticales et identification de noyaux thalamiques chez l’homme par l’electrophysiologie stereotaxique. Neurochirurgia 51:1–18

    Google Scholar 

  26. Guridi J, Gorospe A, Ramos E, Linazasoro G, Rodriguez MC, Obeso JA (1999) Stereotactic targeting of the globus pallidus internus in Parkinson’s disease: imaging versus electrophysiological mapping. Neurosurgery 45:278–287; discussion 287-289

    Article  PubMed  CAS  Google Scholar 

  27. Gybels JM (1963) Microelectrode studies of unit discharges in the sensorimotor cortex of monkeys with tremor. The neural mechanism of parkinsonian tremor. Arsia, Brussels, pp 83–122

    Google Scholar 

  28. Hallett M (1993) Physiology of basal ganglia disorders: an overview. Can J Neurol Sci 20:177–183

    PubMed  CAS  Google Scholar 

  29. Hariz MI (1999) Current controversies in pallidal surgery. Adv Neurol 80:593–602

    PubMed  CAS  Google Scholar 

  30. Hariz MI, De Salles AA (1997) The side-effects and complications of posteroventral pallidotomy. Acta Neurochir Suppl (Wien) 68:42–48

    PubMed  CAS  Google Scholar 

  31. Hariz MI, Fodstad H (1999) Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg 72:157–169

    Article  CAS  Google Scholar 

  32. Herrero MT, Levy R, Ruberg M, Javoy-Agid F, Luquin MR, Agid Y et al. (1996) Glutamic acid decarboxylase mRNA expression in medial and lateral pallidal neurons in the MPTP-treated monkey and patients with Parkinson’s disease. Adv Neurol 69:209–216

    PubMed  CAS  Google Scholar 

  33. Herrero MT, Levy R, Ruberg M, Luquin MR, Villares J, Guillen J et al. (1996) Consequence of nigrostriatal denervation and L-dopa therapy on the expression of glutamic acid decarboxylase messenger RNA in the pallidum. Neurology 47:219–224

    Article  PubMed  CAS  Google Scholar 

  34. Hirai T, Jones EG (1989) Distribution of tachykinin-and enkephalin-immunoreactive fibers in the human thalamus. Brain Res Brain Res Rev 14:35–52

    Article  PubMed  CAS  Google Scholar 

  35. Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Brain Res Rev 14:1–34

    Article  PubMed  CAS  Google Scholar 

  36. Honey CR, Berk C, Palur RS, Schulzer M (2001) Microelectrode recording for pallidotomy: mandatory, beneficial or dangerous? Stereotact Funct Neurosurg 77:98–100

    Article  PubMed  CAS  Google Scholar 

  37. Hubel DH (1957) Tungsten microelectrodes for recording from single units. Science 125:549–550

    Article  PubMed  CAS  Google Scholar 

  38. Humphrey D (1976) Neural networks and systems modelling. In: Kline J (ed) Biological Foundations of Biomedical Engineering. Brown & Co, Boston

    Google Scholar 

  39. Humphrey DR, Corrie WS (1978) Properties of pyramidal tract neuron system within a functionally defined subregion of primate motor cortex. J Neurophysiol 41:216–243

    PubMed  CAS  Google Scholar 

  40. Hutchison WD (1998) Microelectrode techniques and findings of globus pallidus. In: Krauss JK, Grossman RG, Jankovic J (eds) Pallidal surgery of Parkinson’s disease and movement disorders. Lippincott-Raven, Philadelphia, pp 135–152

    Google Scholar 

  41. Hutchison WD (2001) Techniques of microelectrode recording in movement disorders surgery. In: Krauss JK, Jankovic J, Grossman RG (eds) Surgery for Parkinson’s disease and movement disorders. Lippincott Williams & Wilkins, Philadelphia, pp 110–1118

    Google Scholar 

  42. Hutchison WD, Allan RJ, Opitz H, Levy R, Dostrovsky JO, Lang AE et al. (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44:622–628

    Article  PubMed  CAS  Google Scholar 

  43. Hutchison WD, Lang AE, Dostrovsky JO, Lozano AM (2003) Pallidal neuronal activity: implications for models of dystonia. Ann Neurol 53:480–488

    Article  PubMed  Google Scholar 

  44. Hutchison WD, Lozano AM, Davis KD, Saint-Cyr JA, Lang AE, Dostrovsky JO (1994) Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients. Neuroreport 5:1533–1537

    Article  PubMed  CAS  Google Scholar 

  45. Hutchison WD, Lozano AM, Tasker RR, Lang AE, Dostrovsky JO (1997) Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp Brain Res 113:557–563

    Article  PubMed  CAS  Google Scholar 

  46. Jeanmonod D, Magnin M, Morel A (1996) Lowthreshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain 119:363–375

    Article  PubMed  Google Scholar 

  47. Johansson F, Malm J, Nordh E, Hariz M (1997) Usefulness of pallidotomy in advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:125–132

    Article  PubMed  CAS  Google Scholar 

  48. Kimura M (1990) Behaviorally contingent property of movement-related activity of the primate putamen. J Neurophysiol 63:1277–1296

    PubMed  CAS  Google Scholar 

  49. Kimura M (1992) Behavioral modulation of sensory responses of primate putamen neurons. Brain Res 578:204–214

    Article  PubMed  CAS  Google Scholar 

  50. Kimura M, Aosaki T, Hu Y, Ishida A, Watanabe K (1992) Activity of primate putamen neurons is selective to the mode of voluntary movement: visually guided, self-initiated or memory-guided. Exp Brain Res 89:473–477

    Article  PubMed  CAS  Google Scholar 

  51. Kishore A, Turnbull IM, Snow BJ, de la Fuente-Fernandez R, Schulzer M, Mak E et al. (1997) Efficacy, stability and predictors of outcome of pallidotomy for Parkinson’s disease. Six-month followup with additional 1-year observations. Brain 120:729–737

    Article  PubMed  Google Scholar 

  52. Krauss JK, Desaloms JM, Lai EC, King DE, Jankovic J, Grossman RG (1997) Microelectrode-guided posteroventral pallidotomy for treatment of Parkinson’s disease: postoperative magnetic resonance imaging analysis. J Neurosurg 87:358–367

    Article  PubMed  CAS  Google Scholar 

  53. Krauss JK, Simpson RK Jr, Ondo WG, Pohle T, Burgunder JM, Jankovic J (2001) Concepts and methods in chronic thalamic stimulation for treatment of tremor: technique and application. Neurosurgery 48:535–541; discussion 541-543

    Article  PubMed  CAS  Google Scholar 

  54. Laitinen LV, Bergenheim AT, Hariz MI (1992) Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 76:53–61

    Article  PubMed  CAS  Google Scholar 

  55. Laitinen LV, Bergenheim AT, Hariz MI (1992) Ventroposterolateral pallidotomy can abolish all parkinsonian symptoms. Stereotact Funct Neurosurg 58:14–21

    Article  PubMed  CAS  Google Scholar 

  56. Lenz FA, Dostrovsky JO, Tasker RR, Yamashiro K, Kwan HC, Murphy JT (1988) Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol 59:299–316

    PubMed  CAS  Google Scholar 

  57. Lenz FA, Kwan HC, Martin RL, Tasker RR, Dostrovsky JO, Lenz YE (1994) Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 117:531–543

    Article  PubMed  Google Scholar 

  58. Lenz FA, Tasker RR, Kwan HC, Schnider S, Kwong R, Murayama Y et al. (1988) Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic “tremor cells” with the 3-6 Hz component of parkinsonian tremor. J Neurosci 8:754–764

    PubMed  CAS  Google Scholar 

  59. Levy R, Dostrovsky JO, Lang AE, Sime E, Hutchison WD, Lozano AM (1988) Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease. J Neurophysiol 86:249–260

    Google Scholar 

  60. Levy R, Hutchison WD, Lozano AM, Dostrovsky JO (2000) High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci 20:7766–7775

    PubMed  CAS  Google Scholar 

  61. Levy R, Lang AE, Dostrovsky JO, Pahapill P, Romas J, Saint-Cyr J et al. (2001) Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain 124:2105–2118

    Article  PubMed  CAS  Google Scholar 

  62. Loeb GE, Bak MJ, Slacman M, Schmidt EM (1977) Parylene as a chronically stable, reproducible microelectrode insulator. IEEE Trans Biomed Eng 24:121–128

    Article  PubMed  CAS  Google Scholar 

  63. Lorente de Nó R (1947) Action potenzial of the motoneurones of the hypoglossus nucleus. J Cell Comp Physiol 29:207–288

    Article  Google Scholar 

  64. Lozano A, Hutchison W, Kiss Z, Tasker R, Davis K, Dostrovsky J (1996) Methods for microelectrode-guided posteroventral pallidotomy. J Neurosurg 84:194–202

    Article  PubMed  CAS  Google Scholar 

  65. Lozano AM, Hutchison WD (2002) Microelectrode recordings in the pallidum. Mov Disord 17(Suppl 3):S150–154

    Article  PubMed  Google Scholar 

  66. Lozano AM, Hutchison WD, Tasker RR, Lang AE, Junn F, Dostrovsky JO (1998) Microelectrode recordings define the ventral posteromedial pallidotomy target. Stereotact Funct Neurosurg 71:153–163

    Article  PubMed  CAS  Google Scholar 

  67. Lozano AM, Lang AE, Hutchison WD, Dostrovsky JO (1997) Microelectrode recording-guided posteroventral pallidotomy in patients with Parkinson’s disease. Adv Neurol 74:167–174

    PubMed  CAS  Google Scholar 

  68. Ma TP (1996) Saccade-related omnivectoral pause neurons in the primate zona incerta. Neuroreport 7:2713–716

    Article  PubMed  CAS  Google Scholar 

  69. Macchi G, Jones EG (1997) Toward an agreement on terminology of nuclear and subnuclear divisions of the motor thalamus. J Neurosurg 86:670–685

    Article  PubMed  CAS  Google Scholar 

  70. Maciunas RJ, Galloway RL Jr, Latimer JW (1994) The application accuracy of stereotactic frames. Neurosurgery 35:682–694; discussion 694-695

    Article  PubMed  CAS  Google Scholar 

  71. MacMillan ML, Dostrovsky JO, Lozano AM, Hutchison WD (2003) Involvement of human thalamic neurons in internally-and externally-generated movements. J Neurophysiol 22:22

    Google Scholar 

  72. Magnin M, Morel A, Jeanmonod D (2000) Singleunit analysis of the pallidum, thalamus and sub-thalamic nucleus in parkinsonian patients. Neuroscience 96:549–564

    Article  PubMed  CAS  Google Scholar 

  73. Merello M, Lees AJ, Balej J, Cammarota A, Leiguarda R (1999) GPi firing rate modification during beginning-of-dose motor deterioration following acute administration of apomorphine. Mov Disord 14:481–483

    Article  PubMed  CAS  Google Scholar 

  74. Millar J (1992) Extracellular single and multiple unit recording with microelectrodes. In: Stamford JA, editor. Monitoring neuronal activity: a practical approach. IRL Press, New York, pp 1–27

    Google Scholar 

  75. Mitchell IJ, Clarke CE, Boyce S, Robertson RG, Peggs D, Sambrook MA et al. (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. Neuroscience 32:213–226

    Article  PubMed  CAS  Google Scholar 

  76. Monakow KH, Akert K, Kunzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33:395–403

    Article  PubMed  CAS  Google Scholar 

  77. Morrison R (1986) Grounding and shielding techniques in instrumentation. Wiley & Sons, New York

    Google Scholar 

  78. Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16:2671–683

    PubMed  CAS  Google Scholar 

  79. Nambu A, Tokuno H, Inase M, Takada M (1997) Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239:13–16

    Article  PubMed  CAS  Google Scholar 

  80. Nini A, Feingold A, Slovin H, Bergman H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phaselocked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol 74:1800–1805

    PubMed  CAS  Google Scholar 

  81. Obeso JA, Guridi J, DeLong M (1997) Surgery for Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:2–8

    Article  PubMed  CAS  Google Scholar 

  82. Palur RS, Berk C, Schulzer M, Honey CR (2002) A metaanalysis comparing the results of pallidotomy performed using microelectrode recording or macroelectrode stimulation. J Neurosurg 96:1058–1062

    Article  PubMed  Google Scholar 

  83. Pollak P, Krack P, Fraix V, Mendes A, Moro E, Chabardes S et al. (2002) Intraoperative micro-and macrostimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17(Suppl 3):S155–161

    Article  PubMed  Google Scholar 

  84. Raeva S, Lukashev A (1993) Unit activity in human thalamic reticularis neurons. II. Activity evoked by significant and non-significant verbal or sensory stimuli. Electroencephalogr Clin Neurophysiol 86:110–122

    Article  PubMed  CAS  Google Scholar 

  85. Raeva SN (1993) Unit activity of nucleus ventralis lateralis of human thalamus during voluntary movements. Stereotact Funct Neurosurg 60:86–93

    Article  PubMed  CAS  Google Scholar 

  86. Rail W (1962) Electrophysiology of a dendritic neuron model. Biophys J 2:145–167

    Article  Google Scholar 

  87. Rail W (1977) Core conductor theory and cable properties of neurons. In: Brookhart JM and Mountcastle VB, editors. Handbook of Physiology, Section 1. The Nervous System. Vol 1. Bethesda: American Physiological Society, pp 39–79

    Google Scholar 

  88. Rodriguez-Oroz MC, Rodriguez M, Guridi J, Mewes K, Chockkman V, Vitek J et al. (2001) The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain 124:1777–1790

    Article  PubMed  CAS  Google Scholar 

  89. Romo R, Scarnati E, Schultz W (1992) Role of primate basal ganglia and frontal cortex in the internal generation of movements. II. Movementrelated activity in the anterior striatum. Exp Brain Res 91:385–395

    Article  PubMed  CAS  Google Scholar 

  90. Sanghera MK, Grossman RG, Kalhorn CG, Hamilton WJ, Ondo WG, Jankovic J (2003) Basal ganglia neuronal discharge in primary and secondary dystonia in patients undergoing pallidotomy. Neurosurgery 52:1358–1370; discussion 1370-1373

    Article  PubMed  Google Scholar 

  91. Schaltenbrand G, Wahren W (1977) Atlas for Stereotaxy of the human brains. Thieme, Stuttgart

    Google Scholar 

  92. Schultz W, Romo R (1992) Role of primate basal ganglia and frontal cortex in the internal generation of movements. I. Preparatory activity in the anterior striatum. Exp Brain Res 91:363–384

    Article  PubMed  CAS  Google Scholar 

  93. Seiden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam MM (1998) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121:2249–2257

    Article  Google Scholar 

  94. Shannon KM, Penn RD, Kroin JS, Adler CH, Janko KA, York M et al. (1998) Stereotactic pallidotomy for the treatment of Parkinson’s disease. Efficacy and adverse effects at 6 months in 26 patients. Neurology 50:434–438

    Article  PubMed  CAS  Google Scholar 

  95. Shils JL, Tagliati M, Alterman RL (2001) Intraoperative microelectrode recording equipment: what features are necessary? Stereotact Funct Neurosurg 77:101–107

    Article  PubMed  CAS  Google Scholar 

  96. Silberstein P, Kuhn AA, Kupsch A, Trottenberg T, Krauss JK, Wohrle JC et al. (2003) Patterning of globus pallidus local field potenzials differs between Parkinson’s disease and dystonia. Brain 22:22

    Google Scholar 

  97. Slavin KV, Burchiel KJ (2002) MicroGuide microelectrode recording system. Neurosurgery 51:275–278; discussion 278

    Article  PubMed  Google Scholar 

  98. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387

    Article  PubMed  CAS  Google Scholar 

  99. Starr PA (1999) Instrumentation, technique, and technology. Axon Guideline System 3000. Neurosurgery 44:1354–1356

    PubMed  Google Scholar 

  100. Starr PA (2002) Placement of deep brain stimulators into the subthalamic nucleus or Globus pallidus internus: technical approach. Stereotact Funct Neurosurg 79:118–145

    Article  PubMed  Google Scholar 

  101. Sterio D, Beric A, Dogali M, Fazzini E, Alfaro G, Devinsky O (1994) Neurophysiological properties of pallidal neurons in Parkinson’s disease. Ann Neurol 35:586–591

    Article  PubMed  CAS  Google Scholar 

  102. Sterio D, Zonenshayn M, Mogilner AY, Rezai AR, Kiprovski K, Kelly PJ et al. (2002) Neurophysiological refinement of subthalamic nucleus targeting. Neurosurgery 50:58–67; discussion 67-69

    PubMed  Google Scholar 

  103. Tasker RR (2001) Microelectrode findings in the thalamus in chronic pain and other conditions. Stereotact Funct Neurosurg 77:166–168

    Article  PubMed  CAS  Google Scholar 

  104. Tasker RR, Gorecki J, Lenz FA, Hirayama T, Dostrovsky JO (1987) Thalamic microelectrode recording and microstimulation in central and deafferentation pain. Appl Neurophysiol 50:414–417

    PubMed  CAS  Google Scholar 

  105. Tasker RR, Lenz F, Yamashiro K, Gorecki J, Hirayama T, Dostrovsky JO (1987) Microelectrode techniques in localization of stereotactic targets. Neurol Res 9:105–112

    PubMed  CAS  Google Scholar 

  106. Terao T, Okiyama R, Takahashi H, Yokochi F, Taniguchi M, Hamada I et al. (2003) Comparison and examination of stereotactic surgical complications in movement disorders. No Shinkei Geka 31:629–636

    PubMed  Google Scholar 

  107. Terao T, Takahashi H, Yokochi F, Taniguchi M, Okiyama R, Hamada I (2003) Hemorrhagic complication of stereotactic surgery in patients with movement disorders. J Neurosurg 98:1241–1246

    Article  PubMed  Google Scholar 

  108. Terzuolo CA, Araki T (1961) An analysis of intra-versus extracellular potential changes associated with activity of single spinal motoneu-rons. Ann NY Acad Sci 94:547–558

    Article  PubMed  CAS  Google Scholar 

  109. Theodosopoulos PV, Marks WJ Jr, Christine C, Starr PA (2003) Locations of movement-related cells in the human subthalamic nucleus in Parkinson’s disease. Mov Disord 18:791–798

    Article  PubMed  Google Scholar 

  110. Towe AL (1973) Sampling single neuron activity. In: Thompson R, Patterson M (eds) Bioelectrical Recording Techniques. Part A, Cellular Processes and Brain Potentials. Academic Press, New York, pp 79–93

    Google Scholar 

  111. Trepanier LL, Saint-Cyr JA, Lozano AM, Lang AE (1998) Neuropsychological consequences of posteroventral pallidotomy for the treatment of Parkinson’s disease. Neurology 51:207–215

    Article  PubMed  CAS  Google Scholar 

  112. Turner RS, DeLong MR (2000) Corticostriatal activity in primary motor cortex of the macaque. J Neurosci 20:7096–7108

    PubMed  CAS  Google Scholar 

  113. Vila M, Levy R, Herrero MT, Faucheux B, Obeso JA, Agid Y et al. (1996) Metabolic activity of the basal ganglia in parkinsonian syndromes in human and non-human primates: a cytochrome oxidase histochemistry study. Neuroscience 71:903–912

    Article  PubMed  CAS  Google Scholar 

  114. Vila M, Levy R, Herrero MT, Ruberg M, Faucheux B, Obeso JA et al. (1997) Consequences of nigrostriatal denervation on the functioning of the basal ganglia in human and nonhuman primates: an in situ hybridization study of cytochrome oxidase subunit I mRNA. J Neurosci 17:765–773

    PubMed  CAS  Google Scholar 

  115. Vitek JL, Bakay RA, Hashimoto T, Kaneoke Y, Mewes K, Zhang JY et al. (1998) Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. J Neurosurg 88:1027–1043

    Article  PubMed  CAS  Google Scholar 

  116. Vitek JL, Zhang J, Evatt M et al. (1998) GPi pallidotomy for dystonia: clinical outcome and neuronal activity. In: Fahn S, Marsden CD, De-Long MR (eds) Dystonia 3. Advances in Neurology, vol 78. Lippincott-Raven, Philadelphia

    Google Scholar 

  117. Vitek JL, Chockkan V, Zhang JY, Kaneoke Y, Evatt M, DeLong MR et al. (1999) Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol 46:22–35

    Article  PubMed  CAS  Google Scholar 

  118. Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. I. Functional properties in intact animals. J Neurophysiol 72:494–506

    PubMed  CAS  Google Scholar 

  119. Wichmann T, DeLong MR (2003) Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Ann N Y Acad Sci 991:199–213

    Article  PubMed  CAS  Google Scholar 

  120. Yelnik J (2002) Functional anatomy of the basal ganglia. Mov Disord 17(Suppl 3):S15–21

    Article  PubMed  Google Scholar 

  121. Yelnik J, Percheron G (1979) Subthalamic neurons in primates: a quantitative and comparative analysis. Neuroscience 4:1717–1743

    Article  PubMed  CAS  Google Scholar 

  122. Zonenshayn M, Rezai AR, Mogilner AY, Beric A, Sterio D, Kelly PJ (2000) Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery 47:282–292; discussion 292-294

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Capelle, HH., Hutchison, W.D., Fromm, C., Krauss, J.K. (2004). Mikroelektrodenableitung in der funktionellen Neurochirurgie. In: Krauss, J.K., Volkmann, J. (eds) Tiefe Hirnstimulation. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-7985-1956-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7985-1956-5_8

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-62359-2

  • Online ISBN: 978-3-7985-1956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics