What can molecular imaging tell us about schizophrenia?

  • Lyn S. Pilowsky
Conference paper


The term molecular imaging refers in this review to a type of nuclear medicine procedure in which a molecule of interest is labelled with an isotope (positron or single photon emitting nuclide), and acts as a molecular ‘key’ (or radioligand), fitting into a cellular recognition site (receptor, transporter protein or enzymatic pathway) with molecular-level specificity. The radioligand is injected into the bloodstream, passes through the blood brain barrier and binds to a site of interest. When bound, the emitted radiation is detected by a ring of detectors surrounding the head, and a map of radioactive density is produced, reflecting a chemical map of radioligand binding. Thus neurotransmitter systems in the living human brain may be studied relatively noninvasively.


Antipsychotic Drug Single Photon Emission Tomography Atypical Antipsychotic Drug Typical Antipsychotic Drug Living Human Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abi-Dargham A, Kegeles L, Zea-Ponce Y, Printz D, Gil R, Rodenhiser J, Gorman J, Mann J, Van Heertum R, Laruelle M (1999) Imaging resting phasic dopamine synaptic activity in schizophrenia, Schizophrenia Research 36:239CrossRefGoogle Scholar
  2. Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL, Gorman JM, Laruelle M (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 97(14):8104–8109PubMedCrossRefGoogle Scholar
  3. Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22(9): 3708–3719PubMedGoogle Scholar
  4. Bigliani V, Mulligan RS, Acton PD, Visvikis D, Ell PJ, Stephenson C, Kerwin RW, Pilowsky LS (1999) In vivo occupancy of striatal and temporal cortical D2/D3 dopamine receptors by typical antipsychotic drugs - a [123I] epidepride single photon emission tomography (SPET) study, Brit J Psychiatry 175:231–238CrossRefGoogle Scholar
  5. Bigliani V, Mulligan RS, Acton PD, Ohlsen RI, Pike VW, Ell PJ, Gacinovic S, Kerwin RW, Pilowsky LS (2000) Striatal and temporal cortical D2/D3 receptor occupancy by olanzapine - a123I epidepride single photon emission tomography (SPET) study. Psychopharmacology 150:132–140PubMedCrossRefGoogle Scholar
  6. Bressan RA, Erlandsson K, Mulligan RS, Gunn RN, Cunningham VJ, Owens J, Ell PJ, Pilowsky LS (2003) Evaluation of NMDA receptors in vivo in schizophrenic patients with [123I] CNS 1261 and SPET; proceedings: glutamate and disorders of cognition and motivation. New York Acad Sciences Conference, April 2003, 8Google Scholar
  7. Carlsson A (2001) A half-century of neurotransmitter research: impact on neurology and psychiatry. Nobel lecture. Biosci Rep 21(6):691–710CrossRefGoogle Scholar
  8. Connell P (1958) Amphetamine Psychosis. Maudsley Monograph No 5. Oxford University Press, London (pubs)Google Scholar
  9. Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483PubMedCrossRefGoogle Scholar
  10. Crow TJ (1980) Molecular pathology of schizophrenia: more than one disease pro-cess? BMJ 280:66–68PubMedCrossRefGoogle Scholar
  11. Farde L, Wiesel F-A, Stone-Elander S et al (1990) D2 dopamine receptors in neuro-leptic naive schizophrenic patients. Archives of General Psychiatry 47:213–219PubMedCrossRefGoogle Scholar
  12. Farde L, Pauli S, Hall H et al (1988) Stereoselective binding of 11C raclopride in the living human brain - a search for extrastriatal central D2 receptors by PET. Psychopharmacology 94:471–478PubMedCrossRefGoogle Scholar
  13. Farde L, Nordstrom AL, Wiesel F-A et al (1992) Positron emission tomographic analysis of central D1 and D2 receptor occupancy in patients treated with classical neuroleptics and clozapine. Archives of General Psychiatry 49:538–544PubMedCrossRefGoogle Scholar
  14. Farde L, Nordstrom AL, Wiesel A, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomography analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side-effects. Arch Gen Psychiatry 49:538–543PubMedCrossRefGoogle Scholar
  15. Gefvert O, Bergstrom M, Langstrom B, Lundberg T, Lindstrom L, Yates R (1998) Time course of central nervous dopamine-D2 and 5-HT2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel) in patients with schizophrenia. Psychopharmacology (Berl) 135(2):119–126CrossRefGoogle Scholar
  16. Johnstone EC, Crow TJ, Frith CD, Carney MWP, Price JS (1978) Mechanisms of the antipsychotic effect in the treatment of acute schizophrenia. Lancet i:848–851Google Scholar
  17. Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000) Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 157(4):514–520PubMedCrossRefGoogle Scholar
  18. Kapur S, Zipursky R, Remington G (1999) Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 156(2):286–293PubMedGoogle Scholar
  19. Kapur S, Seeman P (2001) Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis. American Journal of Psychiatry 158:360–369PubMedCrossRefGoogle Scholar
  20. Karlsson P, Farde L, Halldin C, Sedvall G (2002) PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry 159(5):761–767PubMedCrossRefGoogle Scholar
  21. Kessler RM, Whetsell WO, Sib Ansari M, Votaw JR, Paulis T de, Clanton JA, Schmidt DE, Scott Mason N, Manning RG (1993) Identification of extrastriatal dopamine D2 receptors in post mortem human brain with 1251-epidepride. Brain Research 609:237–243PubMedCrossRefGoogle Scholar
  22. Kessler RM, Ansari MS, Lui R, Dawant B, Meltzer HY (2003) Occupancy of cortical and substantia nigra DA D2 receptors by typical and atypical antipsychotic drugs. Schizophrenia Research 60(1):242CrossRefGoogle Scholar
  23. Laruelle M, Abi-Dargham A, Van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93/17:9235–9240CrossRefGoogle Scholar
  24. Lewis R, Kapur S, Jones C, DaSilva J, Brown GM, Wilson AA, Houle S, Zipursky RB (1999) Serotonin 5-HT2 receptors in schizophrenia: a PET study using [18F] setoperone in neuroleptic-naive patients and normal subjects. Am J Psychiatry 156(1): 72–78PubMedGoogle Scholar
  25. Lidow MS, Williams GV, Goldman-Rakic PS (1998) The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacol Sci 19(4):136–140PubMedCrossRefGoogle Scholar
  26. Martinot J-L, Palliere-Martinot ML, Loc’h C et al (1991)The estimated density of D2 striatal receptors in schizophrenia - a study with positron emission tomography and 76Br-bromolisuride. 158:346–350Google Scholar
  27. Meltzer HY, Matsubara S (1989) The ratios of serotonin and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacology Bulletin 25:390–397PubMedGoogle Scholar
  28. Moore H, West AR, Grace AA (1999) The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia. Biol Psychiatry 46(1):40–55PubMedCrossRefGoogle Scholar
  29. Ngan ET, Yatham LN, Ruth TJ, Liddle PF (2000) Decreased serotonin 2A receptor densities in neuroleptic-naive patients with schizophrenia: a PET study using [18F] setoperone. Am J Psychiatry 157(6):1016–1018PubMedCrossRefGoogle Scholar
  30. Nordstrom AL, Farde L, Weisel FA, Forslund K, Pauli S, Halldin C, Uppfeldt G (1993) Central D2 dopamine receptor occupancy in relation to antipsychotic drug effects: a double blind PET study of schizophrenic patients. Biol Psychiatry 33:227–235PubMedCrossRefGoogle Scholar
  31. Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B (1993) 5HT2 and D2 dopamine receptor occupancy by risperidone in the living human brain. Psychopharmacology 110:265–272PubMedCrossRefGoogle Scholar
  32. Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385(6617):634–636PubMedCrossRefGoogle Scholar
  33. Peroutka SJ, Snyder SH (1980) Relationship of neuroleptic drug effects at brain dopamine, serotonin, alpha-adrenergic and histaminergic receptors to clinical potency. Am J Psychiatry 137:1518–1522PubMedGoogle Scholar
  34. Pilowsky LS, Costa DC, Ell PJ, Verhoeff NPLG, Murray RM, Kerwin RW (1994) D2 dopamine receptor binding in the basal ganglia of antipsychotic free schizophrenic patients - a123I IBZM single photon emission tomography (SPET) study. British Journal of Psychiatry 164:16–26PubMedCrossRefGoogle Scholar
  35. Pilowsky LS, Costa DC, Ell PJ, Murray R, Verhoeff N, Kerwin RW (1993) Antipsychotic medication, D2 dopamine receptor blockade and clinical response - a123I IBZM SPET (single photon emission tomography) study. Psychol Med 23:791–799PubMedCrossRefGoogle Scholar
  36. Pilowsky LS, Costa DC, Ell PJ, Murray R, Verhoeff N, Kerwin RW (1992) Clozapine, single photon emission tomography and the D2 dopamine receptor blockade hypothesis of schizophrenia. Lancet 340:199–202PubMedCrossRefGoogle Scholar
  37. Pilowsky LS, Mulligan RS, Acton PD, Costa DC, Ell PJ, Kerwin RW (1997) Limbic selectivity of clozapine. The Lancet 350:490–491CrossRefGoogle Scholar
  38. Raedler TJ, Knable MB, Jones DW, Urbina RA, Gorey JG, Lee KS, Egan MF, Coppola R, Weinberger DR (2003) In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatry 160(1):118–127PubMedCrossRefGoogle Scholar
  39. Seeman P (2002) Atypical antipsychotics: mechanism of action. Can J Psychiatry 47: 27–38PubMedGoogle Scholar
  40. Stephenson C, Bigliani V, Kerwin W, Mulligan RS, Acton PD, Pike VW, Ell PJ, Gacinovic S, Pilowsky LS (2000) The action of quetiapine at striatal and extra-striatal D2/D3 receptors in vivo. Brit J Psychiatry 177:408–415CrossRefGoogle Scholar
  41. Strange PG (2001) Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacological Reviews 53:119–133PubMedGoogle Scholar
  42. Tauscher J, Kapur S, Verhoeff NP, Hussey DF, Daskalakis ZJ, Tauscher-Wisniewski S, Wilson AA, Houle S, Kasper S, Zipursky RB (2002) Brain serotonin 5-HT(1A) re-ceptor binding in schizophrenia measured by positron emission tomography and [11C]WAY-100635. Arch Gen Psychiatry 59(6):514–520PubMedCrossRefGoogle Scholar
  43. Travis MJ, Busatto GF, Pilowsky LS, Kerwin RW, Mulligan RS, Gacinovic S, Costa DCC, Ell PJ, Mertens J, Terriere D (1997) Serotonin 5-HT2a occupancy in vivo and response to the new antipsychotics olanzapine and sertindole. Brit J Psychiat (Let) 171:290–291CrossRefGoogle Scholar
  44. Travis MJ, Busatto GF, Pilowsky LS, Mulligan R, Acton PD et al (1998) 5HT2a receptor blockade in schizophrenic patients treated with risperidone or clozapine, a123I-5-I-R-91150 single photon emission tomography (SPET) study. Brit J Psychiatry 173:236–242CrossRefGoogle Scholar
  45. Trichard C, Paillere-Martinot ML, Attar-Levy D, Recassens C, Monnet F, Martinot JL (1998) Binding of antipsychotic drugs to cortical 5-HT2A receptors: a PET study of chlorpromazine, clozapine, and amisulpride in schizophrenic patients., Am J Psychiatry 155(4):505–508PubMedGoogle Scholar
  46. Wolkin A, Barouche F, Wolf AP, Rotrosen J, Fowler JS, Shiue C-Y, Cooper TB, Brodie JD (1989) Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. American Journal of Psychiatry 146:905–908PubMedGoogle Scholar
  47. Wong DF, Wagner Jr HN, Tune LE et al (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234:1558–1563PubMedCrossRefGoogle Scholar
  48. Verhoeff NP, Hussey D, Lee M, Tauscher J, Papatheodorou G, Wilson AA, Houle S, Kapur S (2002) Dopamine depletion results in increased neostriatal D(2), but not D(1), receptor binding in humans. Mol Psychiatry 7(3):233, 322–328PubMedCrossRefGoogle Scholar
  49. Xiberas X, Martinot JL, Mallet L, Artiges E, Loc’h C, Maziere B, Pailliere-Martinot M (2001) Extrastriatal and striatal D2 dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. British Journal of Psychiatry 179:503–509PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Lyn S. Pilowsky
    • 1
  1. 1.Reader in Neurochemical Imaging, UK Medical Research Council Senior Clinical FellowInstitute of PsychiatryLondonUK

Personalised recommendations