Schizophrenia: developmental, degenerative or both?

  • Janice R. Stevens
Conference paper


The fundamental cause or causes of schizophrenia are unknown in a majority of cases. As accepted by most neurologists, developmental disorders include a diversity of developmental malformations and diseases acquired during the intrauterine period of life (Adams and Victor 1977). In contrast degenerative disorders include “an inexplicable decline from a previous level of normalcy to a lower level of function” (Adams and Victor 1977). A change in our understanding of the etiology of many genetic, metabolic, toxic, and nutritional disorders has changed the definition of some disorders formerly deemed degenerative to one or more of these designations. What about schizophrenia? Clinical and pharmacological data suggest that schizophrenia results from an imbalance between specific excitatory and inhibitory systems in specific brain regions that occurs most frequently but not exclusively during adolescence and young adult life (Stevens 2002).


Basal Forebrain Ventral Striatum Septal Area Diagonal Band BioI Psychiatry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackenheil M (1989) Clozapine - pharmacokinetic investigations and biochemical effects in man. Psychopharmacology 99:S 32–37CrossRefGoogle Scholar
  2. Adams RD, Victor M (1967) Principles of Neurology, 5th ed. McGraw Hill, NY, p 957Google Scholar
  3. Andrew DA, Dudek FE (1984) Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. J of Neurophysiology 51:453–468Google Scholar
  4. Becker JB, Rudick CN, Jenkins WJ (2001) The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat. J Neuroscience 21:3231–3236Google Scholar
  5. Byne W, Buchsbaum MS, Mattiace LA, Hazlett EA, Kemether E, Elhakem SL, Purohit DP, Haroutunian V, Jones L (2002) Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 159:59–65PubMedCrossRefGoogle Scholar
  6. Danos P, Baumann B, Bernstein HG, Stauch R, Krell D, Falkai P, Bogerts B (2002) The ventral lateral posterior nucleus of the thalamus in schizophrenia. A post mortem study. Psychiatry Res 114:1–9PubMedCrossRefGoogle Scholar
  7. Cahn W, Pol He, Lems EB, van Heren NE, Schnack HG, Van der Linden JA, Schothorst PF, Van Engelend H, Kahn RS (2002) Brain volume changes in first episode schizophrenia: a 1 year follow-up study. Arch Gen Psychiatry 59:1002–1010PubMedCrossRefGoogle Scholar
  8. Cotter D, Wilson S, Roberts E, Kerwin R, Everall IP (2000) Increased dendritic MAP2 expression in the hippocampus in schizophrenia. Schiz Research 41:313–323CrossRefGoogle Scholar
  9. Delay J, Deniker P (1952) Comptes rendus du 50eme congres des medicins alienistes et neurologistes du France et des pays de langue FrancaiseGoogle Scholar
  10. DeLisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R (1997) Schizophre-nia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Res 74:129–140PubMedCrossRefGoogle Scholar
  11. Denney D, Stevens JR (1995) Clozapine and Seizures. Biol Psychiatry 37:427–433PubMedCrossRefGoogle Scholar
  12. Devinsky O, Honigfeld G, Patin J (1991) Clozapine-related seizures. Neurology 41:369–371PubMedCrossRefGoogle Scholar
  13. Diagnostic and Statistical Manual of Mental Disorders IV (1994) American Psychiatric Association Press, Washington, DCGoogle Scholar
  14. Fallon JH, Loughlin SE, Ribak CE (1983) The islands of Calleja complex of rat basal forebrain. III. Histochemical evidence for a striatopallidal system. J Comp Neurol 218:91–120PubMedCrossRefGoogle Scholar
  15. Fallon JH (1983) The islands of Calleja complex of rat basal forebrain II connections of medium and large sized cells. Brain Res Bull 10:775–793PubMedCrossRefGoogle Scholar
  16. Groenewegen HJ, Russchen FT (1984) Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: a tracing and immunohistochemical study in the cat. J Comp Neurol 223:347–367PubMedCrossRefGoogle Scholar
  17. Guo N, Vincent SR, Fibiger HC (1998) Phenotypic characteristics of neuroleptic-sensitive neurons in the forebrain: contrasting targets of haloperidol and clozapine. Neuropsychopharmacology 19:133–145PubMedCrossRefGoogle Scholar
  18. Gurevich EV, Bordelon Y, Shapiro RM, Arnold SE, Gur RE, Joyce JN (1997) Mesolimbic dopamine D3 receptors and use of antipsychotics in patients with schizophrenia. A postmortem study. Arch Gen Psychiat 54:225–232PubMedCrossRefGoogle Scholar
  19. Häfner H (1998) Causes and consequences of the gender difference in age at onset of schizophrenia. Schizophrenia Bull 24:99–113CrossRefGoogle Scholar
  20. Heath RG (1972) Pleasure and brain activity in man. Deep and surface electroencephalograms during orgasm. J Nery Ment Dis 154:3–18CrossRefGoogle Scholar
  21. Heath RG (1959) Studies in Schizophrenia Cambridge Mass. Harvard University PressGoogle Scholar
  22. Heckers S (1997) Neuropathology of schizophrenia: cortex, thalamus, basal ganglia, and neurotransmitter-specific projection systems. Schizoph Bull 23:403–421PubMedCrossRefGoogle Scholar
  23. Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS (1997) The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 9:354–381PubMedGoogle Scholar
  24. Heimer L, DeOlmos JS, Alheid GF, Pearson J, Sakamoto N, Shinoda K, Marsteiner J, Switzer RC (1999) In: Bloom FE, Bjorklund A, Hokfelt T (eds) The human basal forebrain Part II. Handbook of Chemical Neuroanatomy. Elsevier, Amsterdam, pp 257–225Google Scholar
  25. Herzog AG (1999) Psychoneuroendocrine aspects of temporal lobe epilepsy. Part Epilepsy and reproductive steroids. Psychosomatics 48:102–108CrossRefGoogle Scholar
  26. Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ (1999) Synaptic andplasticity-associated proteins in anterior frontal cortex in severe mental illness. Neuroscience 91:1247–1255PubMedCrossRefGoogle Scholar
  27. Jablensky A (1999) The conflict of the nosologists: views on schizophrenia and manic depressive illness in the early part of the 20th century. Schiz Res 39:95–100CrossRefGoogle Scholar
  28. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizo-phrenia. Am J Psychiatry 148:1301–1308PubMedGoogle Scholar
  29. Kane J (2000) Pharmacologic treatment of schizophrenia. Biol Psychiatry 46:1396–1408CrossRefGoogle Scholar
  30. Kawakami M, Sawyer CH (1959) Induction of behavioral and electroencephalographic changes in the rabbit by hormone administration of brain stimulation. Endocrinology 65:631–643PubMedCrossRefGoogle Scholar
  31. Kawakami M, Terasawa E, Ibuki T (1970) Changes in multiple unit activity of the brain during the estrous cycle. Neuroendocrinology 6:30–48PubMedCrossRefGoogle Scholar
  32. Kawakami M, Uemura T, Hayashi R (1982) Electrophysiological correlates of pulsatile gonadotropin release on rats. Neuroendocrinology 35:63–67PubMedCrossRefGoogle Scholar
  33. Keefer DA, Stumpf WE (1975) Atlas of estrogen-concentrating cells in the central nervous system of the squirrel monkey. J Comp Neurol 160:419–442PubMedCrossRefGoogle Scholar
  34. Knobil E (1992) Remembrance: the discovery of the hypothalamic gonadotropin-releasing hormone pulse generator and of its physiological significance. Endocrinology 131:1005–1006PubMedCrossRefGoogle Scholar
  35. Kramer MS, Last B, Getson A, Reines SA (1997) The effects of a selective D4 Dopamine receptor antagonist in acutely psychotic inpatients with schizophrenia. Arch Gen Psychiat 54:567–572PubMedCrossRefGoogle Scholar
  36. Leonard CM, Kuldau JM, Breier JI, Zuffante PA, Gauteir ER, Heron DC, Lavery EM, Packing J, Williams SA, DeBose CA (1999) Cumulative effects of anatomical risk factors for schizophrenia: an MRI study. Biol Psychiat 46:374–382PubMedCrossRefGoogle Scholar
  37. Meyer G, Gonzalez-Hernandez T, Carrillo-Padilla F, Ferres-Torres R (1989) Aggregations of granule cells in the basal forebrain (islands of Calleja): Golgi and cytoarchitectonic study in different mammals, including man. J Comp Neurol 284: 405–428PubMedCrossRefGoogle Scholar
  38. O’Byrne KT, Thalabard JC, Grosser PM, Wilson RC, Williams CL, Chen MD, Ladendorf D, Hotchkiss J, Knobil E (1991) Radiotelemetric monitoring of hypothalamic gonadotropin-releasing hormone pulse generator activity throughout the menstrual cycle of the rhesus monkey. Endocrinology 129:1207–1214PubMedCrossRefGoogle Scholar
  39. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal areas and other regions of the rat brain. J Comp Physiol Psychol 47:419427CrossRefGoogle Scholar
  40. Ordog T, Chen MD, Nishihara M, Connaughton MA, Goldsmith JR, Knobil E (1997) On the role of gonadotropin-releasing hormone (GnRH) in the operation of the GnRH pulse generator in the rhesus monkey. Neuroendocrinology 65:307–313PubMedCrossRefGoogle Scholar
  41. Parra A, Velasco M, Cervantes C, Munoz H, Cerbon MA, Velasco F (1980) Plasma prolactin increase following electric stimulation of the amygdala in humans. Neuroendocrinology 31:60–65PubMedCrossRefGoogle Scholar
  42. Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann J, Latov N, Hays AP, Dwork AJ (2000) Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders. Arch Gen Psychiat 57:349–356PubMedCrossRefGoogle Scholar
  43. Staal WG, Hulshoff Pol HE, Schnack HG, Van Haren NEM, Seifer N, Kahn RS (2001) Structural brain abnormalities in chronic schizophrenia at the extremes of the outcome spectrum. Am J Psychiat 158:1140–1142PubMedCrossRefGoogle Scholar
  44. Sem-Jacobson CW, Petersen MC, Lazarte JA et al (1955) Intracerebral electrographic recordings from psychotic patients during hallucinations and agitation: preliminary report. Am J Psychiatry 112:278–288Google Scholar
  45. Stevens JR (1973) An anatomy of schizophrenia? Arch Gen Psychiat 29:177–189PubMedCrossRefGoogle Scholar
  46. Stevens JR (1999) Epilepsy, schizophrenia and the extended amygdala. Ann NY Acad Sci 877:548–561PubMedCrossRefGoogle Scholar
  47. Stevens JR (2002) Schizophrenia: Reproductive hormones and the brain. Am J Psychiatry 159:713–719PubMedCrossRefGoogle Scholar
  48. Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, Sedvall G (1998) D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res 779:58–74PubMedCrossRefGoogle Scholar
  49. Talbot K, Woolf NJ, Butcher LL (1988) Feline islands of Calleja complex: I. Cytoarchi-tectural organization and comparative anatomy. J Comp Neurol 275:553–579PubMedCrossRefGoogle Scholar
  50. Talbot K, Woolf NJ, Butcher LL 1988) Feline islands of Calleja complex: II. Choliner-gic and cholinesterasic features. J Comp Neurol 275:580–603PubMedCrossRefGoogle Scholar
  51. Tamminga CA (1998) Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 12:21–36PubMedCrossRefGoogle Scholar
  52. Truffinet P, Tamminga CA, Fabre, LF, Meltzer HY, Riviere M-E, Papillon-Downey C (1999) Placebo controlled study of the D4/5-HT2A antagonist fananserin in the treatment of schizophrenia. Am J Psychiat 156:419–425PubMedGoogle Scholar
  53. Van Cauter P, Linkowski P, Kerkhofs M, Hubain P, L’Hermite-Baleriaux M, Leclercq R, Brasseur M, Capinschi G, Mendelewicz J (1991) Circadian and sleep related endocrine rhythms in schizophrenia. Arch Gen Psychiat 48:348–356PubMedCrossRefGoogle Scholar
  54. Van Tol HH, Bunzow JR, Guan H-C, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:614–619PubMedCrossRefGoogle Scholar
  55. Varidy M, Kays R (1983) LSD psychosis or LSD-induced schizophrenia? A multi-method inquiry. Arch Gen Psychiat 40:877–883CrossRefGoogle Scholar
  56. Wilson RC, Kesner JS, Kaufman JM, Uemura T, Akema T, Knobil E (1984) Central electrophysiologic correlates of pulsatile luteinizing hormone secretion in the rhesus monkey. Neuroendocrinology 39:256–262PubMedCrossRefGoogle Scholar
  57. Woolley CS, Weiland NG, McEwen BS, Schwartzkroin PA (1997) Estradiol increases the sensitivity of hippocampal CAI pyramidal cells to NMDA receptor-mediated synaptic input: correlation with dendritic spine density. J Neurosci 17:1848–1859PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Janice R. Stevens
    • 1
  1. 1.Oregon Health Sciences UniversityPortlandUSA

Personalised recommendations