Human genome and the perspectives for schizophrenia

  • Elida P. B. Ojopi
  • Sheila Passos Gregorio
  • Pedro Edson Moreira Guimarães
  • Cintia Fridman
  • Emmanuel Dias Neto
Conference paper


The first attempts to comprehend biology are probably as old as language and conscious thought. Mankind has been always driven to understand his origins as well as to influence the mechanics of life, death, and disease. While we have seen dramatic discoveries in this area, particularly over the last 50 years, in the past three years the field has taken a significant leap due primarily to breakthroughs enabled by genomic sequencing processes. The laser-based, semi-automated DNA sequencing technology (a technique that allows a fast accumulation of genetic information, the genetic blueprint for a given organism) has fundamentally changed our knowledge of biology, and many associated fields. The implementation of this technique enabled the accomplishment of one of the most important scientific achievements ever made: the sequencing of the human genome.


Human Genome Susceptibility Locus Velocardiofacial Syndrome International Human Genome Sequencing Consortium Serum S100B Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baron M (2001) Genetics of schizophrenia and the new millennium: progress and pitfalls. Am J Hum Genet 68(2):299–312PubMedCrossRefGoogle Scholar
  2. Berrettini WH (2000) Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol Psychiatry 48(6):531–538PubMedCrossRefGoogle Scholar
  3. Blouin JL, Dombroski BA, Nath SK et al (1998) Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 20:70–73PubMedCrossRefGoogle Scholar
  4. Brookes AJ (1999) The essence of SNPs. Gene 234:177–186PubMedCrossRefGoogle Scholar
  5. Brookes AJ, Lehvaslaiho H, Siegfried M, Boehm JG, Yuan YP, Sarkar CM, Bork P, Ortigao F (2000) HGBASE: a database of SNPs and other variations in and around human genes. Nucleic Acids Res 28:356–360PubMedCrossRefGoogle Scholar
  6. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS (2000) Location of a major susceptibility locus for familial schizophrenia on chromosome 1g21-q22. Science 288(5466):678–682PubMedCrossRefGoogle Scholar
  7. Buetow KH, Edmonson MN, Cassidy AB (1999) Reliable identification of large numbers of candidate SNPs from public EST data. Nat Genet 21:323–325PubMedCrossRefGoogle Scholar
  8. Camp NJ, Neuhausen SL, Tiobech J et al (2001) Genomewide multipoint linkage analysis of seven extended Palauan pedigrees with schizophrenia, by a Markov-Chain Monte Carlo method. Am J Hum Genet 69:1278–1289PubMedCrossRefGoogle Scholar
  9. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22:231–238PubMedCrossRefGoogle Scholar
  10. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al (2002) Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci 99(21):13675–13680PubMedCrossRefGoogle Scholar
  11. Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE et al (1999) The DNA sequence of human chromosome 22. Nature 402:489–495PubMedCrossRefGoogle Scholar
  12. Edwalds-Gilbert G, Veraldi KL, Milcarek C (1997) Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res 25:2547–2561PubMedCrossRefGoogle Scholar
  13. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R et al (2001) Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 10(15):1611–1617PubMedCrossRefGoogle Scholar
  14. Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:487–491PubMedCrossRefGoogle Scholar
  15. Ewing B, Green P (2000) Analysis of expressed sequence tags indicates 35000 human genes. Nat Genet 25:232–234PubMedCrossRefGoogle Scholar
  16. Fields C, Adams MD, White O, Venter JC (1994) How many genes are in the human genome? Nat Genet 7:345–346PubMedCrossRefGoogle Scholar
  17. Freedman R, Leonard S, Gault JM, Hopkins J, Cloninger CR, Kaufmann CA, Tsuang MT, Farone SV, Malaspina D, Svrakic DM, Sanders A, Gejman P (2001) Linkage disequilibrium for schizophrenia at the chromosome 15q13–14 locus of the alpha7-nicotinic acetylcholine receptor subunit gene (CHRNA7). Am J Med Genet 105(1):20–22PubMedCrossRefGoogle Scholar
  18. Gong QH, Cho JW, Huang T, Potter C, Gholami N, Basu NK, Kubota S, Carvalho S, Pennington MW, Owens IS et al (2001) Thirteen UDP glucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics 11(4):357–368PubMedCrossRefGoogle Scholar
  19. Gottesman II, Shields J (1976) A critical review of recent adoption, twin, and family studies of schizophrenia: behavioral genetics perspectives. Schizophr Bull 2(3): 360–401PubMedCrossRefGoogle Scholar
  20. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS, Read T, Murphy P, Blaveri E, McQuillin A, Petursson H, Curtis D (2001) Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23. Am J Hum Genet 68(3):661–673PubMedCrossRefGoogle Scholar
  21. Hewett M, Oliver DE, Rubin DL, Easton KL, Stuart JM, Altman RB, Klein TE (2002) PharmGKB: the pharmacogenetics knowledge base. Nucleic Acids Res 30:163–165PubMedCrossRefGoogle Scholar
  22. Hirakawa M (2002) HOWDY: an integrated database system for human genome research. Nucleic Acids Res 30:152–157PubMedCrossRefGoogle Scholar
  23. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R, Juvonen H, Kokko-Sahin ML, Vaisanen L, Mannila H, Lönnqvist J, Peltonen L (1999) A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet 65(4):1114–1124PubMedCrossRefGoogle Scholar
  24. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  25. International SNP Map Working Group (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409: 928–933CrossRefGoogle Scholar
  26. Irizarry K, Kustanovich V, Li C, Brown N, Nelson S, Wong W, Lee CJ (2000) Genome-wide analysis of single-nucleotide polymorphisms in human expressed sequences. Nat Genet 26:233–236PubMedCrossRefGoogle Scholar
  27. Jonsson EG, Flyckt L, Burgert E, Crocq MA, Forslund K, Mattila-Evenden M, Rylander G, Asberg M, Nimgaonkar VL, Edman G, Bjerkenstedt L, Wiesel FA, Sedvall GC (2003) Dopamine D3 receptor gene Ser9Gly variant and schizophrenia: association study and meta-analysis. Psychiatr Genet 13(1):1–12PubMedCrossRefGoogle Scholar
  28. Jorgensen TH, Borglum AD, Mors O, Wang AG, Pinaud M, Flint TJ, Dahl HA, Vang M, Kruse TA, Ewald H (2002) Search for common haplotypes on chromosome 22q in patients with schizophrenia or bipolar disorder from the Faroe Islands. Am J Med Genet 114(2):245–252PubMedCrossRefGoogle Scholar
  29. Kendler KS, Myers JM, O’Neill FA, Martin R, Murphy B, MacLean CJ, Walsh D, Straub RE (2000) Clinical features of schizophrenia and linkage to chromosomes 5q, 6p, 8p, and 10p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry 157(3):402–408PubMedCrossRefGoogle Scholar
  30. Kennedy JL, Giuffra LA, Moises HW, Cavalli-Sforza LL, Pakstis AJ, Kidd JR, Castiglione CM, Sjogren B, Wetterberg L, Kidd KK (1988) Evidence against linkage of schizophrenia to markers on chromosome 5 in a northern Swedish pedigree. Nature 336(6195):167–170PubMedCrossRefGoogle Scholar
  31. Kruglyak L, Nickerson DA (2001) Variation is the spice of life. Nature Genetics 27:234–236PubMedCrossRefGoogle Scholar
  32. Lander ES, Weinberg RA (2000) Genomics: journey to the center of biology. Science 287:1777–1782PubMedCrossRefGoogle Scholar
  33. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  34. Lara DR, Gama CS, Belmonte-de-Abreu P, Portela LV, Goncalves CA, Fonseca M, Hauck S, Souza DO (2001) Increased serum S100B protein in schizophrenia: a study in medication-free patients. J Psychiatr Res 35(1):11–14PubMedCrossRefGoogle Scholar
  35. Liang F, Holt I, Pertea G, Karamycheva S, Salzberg SL, Quackenbush J (2000) Gene index analysis of the human genome estimates approximately 120000 genes. Nat Genet 25:239–240PubMedCrossRefGoogle Scholar
  36. Lindholm E, Ekholm B, Balciuniene J, Johansson G, Castensson A, Koisti M, Nylander PO, Pettersson U, Adolfsson R, Jazin E (1999) Linkage analysis of a large Swedish kindred provides further support for a susceptibility locus for schizophrenia on chromosome 6p23. Am J Med Genet 88(4):369–377PubMedCrossRefGoogle Scholar
  37. Lindholm E, Ekholm B, Shaw S, Jalonen P, Johansson G, Pettersson U, Sherrington R, Adolfsson R, Jazin E (2001) A schizophrenia-susceptibility locus at 6q25, in one of the world’s largest reported pedigrees. Am J Hum Genet 69(1):96–105PubMedCrossRefGoogle Scholar
  38. Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML, Lenane M, Robertson B, Wijsman EM, Rapoport JL, Gogos JA, Karayiorgou M (2002) Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci 99(6):3717–3722PubMedCrossRefGoogle Scholar
  39. Lung FW, Tzeng DS, Shu BC (2002) Ethnic heterogeneity in allele variation in the DRD4 gene in schizophrenia. Schizophr Res 57(2-/3):239–245PubMedCrossRefGoogle Scholar
  40. Marsh S, Kwok P, McLeod HL (2002) SNP databases and pharmacogenetics: great start, but a long way to go. Human Mutation 20:174–179PubMedCrossRefGoogle Scholar
  41. McInnis MG, McMahon FJ, Crow T, Ross CA, DeLisi LE (1999) Anticipation in schizo-phrenia: a review and reconsideration. Am J Med Genet 88(6):686–693PubMedCrossRefGoogle Scholar
  42. McLeod HL, Evans WE (2001) Pharmacogenomics: unlocking the human genome for better drug therapy. Ann Rev Pharmacol Tox 41:101–121CrossRefGoogle Scholar
  43. Mimics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P (2001) Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 6(3):293–301CrossRefGoogle Scholar
  44. Moises HW, Yang L, Kristbjarnarson H, Wiese C, Byerley W, Macciardi F, Arolt V, Blackwood D, Liu X, Sjogren B et al (1995) An international two-stage genomewide search for schizophrenia susceptibility genes. Nat Genet 11(3):321–324PubMedCrossRefGoogle Scholar
  45. Muir WJ, Thomson ML, McKeon P, Mynett-Johnson L, Whitton C, Evans KL, Porteous DJ, Blackwood DH (2001) Markers close to the dopamine D5 receptor gene (DRD5) show significant association with schizophrenia but not bipolar disorder. Am J Med Genet 105(2):152–158PubMedCrossRefGoogle Scholar
  46. Nature (2001) Human genomes, public and private. Nature 409:745CrossRefGoogle Scholar
  47. Noble EP (2003) D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am J Med Genet 116(1 Suppl):103–125CrossRefGoogle Scholar
  48. Ohnishi Y, Tanaka T, Yamada R, Suematsu K, Minami M, Fujii K, Hoki N, Kodama K, Nagata S, Hayashi T, Kinoshita N, Sato H, Sato H, Kuzuya T, Takeda H, Hori M, Nakamura Y (2000) Identification of 187 single nucleotide polymorphisms (SNPs) among 41 candidate genes for ischemic heart disease in the Japanese population. Hum Genet 106:288–292PubMedCrossRefGoogle Scholar
  49. Paunio T, Ekelund J, Varilo T et al (2001) Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 10:3037–3048PubMedCrossRefGoogle Scholar
  50. Roest Crollius H, Jaillon 0, Bernot A, Dasilva C, Bouneau L, Fischer C, Fizames C, Wincker P, Brottier P, Quetier F, Saurin W, Weissenbach J (2000) Estimate of human gene number provided by genome-wide analysis using Tetraodon nigroviridis DNA sequence. Nat Genet 25:235–238CrossRefGoogle Scholar
  51. Sawa A, Snyder SH (2002) Schizophrenia: diverse approaches to a complex disease. Science 296(5568):692–695PubMedCrossRefGoogle Scholar
  52. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler K, Velculescu V (2002) Using the transcriptome to annotate the genome. Nature Biotechnology 19:508–512CrossRefGoogle Scholar
  53. Schalling M, Hudson TJ, Buetow KH, Housman DE (1993) Direct detection of novel expanded trinucleotide repeats in the human genome. Nat Genet 4(2):135–139PubMedCrossRefGoogle Scholar
  54. Schwab SG, Wildenauer DB (1999) Chromosome 22 workshop report. Am J Med Genet 88:276–278PubMedCrossRefGoogle Scholar
  55. Seeman P, Guan HC, Van Tol HHM (1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365:441–445PubMedCrossRefGoogle Scholar
  56. Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B, Wasmuth J, Dobbs M, Gurling H (1988) Localization of a susceptibility locus for schizophrenia on chromosome 5. Nature 336(6195):164–167PubMedCrossRefGoogle Scholar
  57. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311PubMedCrossRefGoogle Scholar
  58. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A, Reznik I, Spivak B, Grisaru N, Karp L, Schiffer R, Kotler M, Strous RD, Swartz-Vanetik M, Knobler HY, Shinar E, Beckmann JS, Yakir B, Risch N, Zak NB, Darvasi A (2002) A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 71(6):1296–1302PubMedCrossRefGoogle Scholar
  59. Silverman JM, Greenberg DA, Altstiel LD, Siever LJ, Mohs RC, Smith CJ, Zhou G, Hollander TE, Yang XP, Kedache M, Li G, Zaccario ML, Davis KL (1996) Evidence of a locus for schizophrenia and related disorders on the short arm of chromosome 5 in a large pedigree. Am J Med Genet 67(2):162–171PubMedCrossRefGoogle Scholar
  60. Skol AD, Young KA, Tsuang DW, Faraone SV, Haverstock SL, Bingham S, Prabhudesai S, Mena F, Menon AS, Yu CE, Rundell P, Pepple J, Sauter F, Baldwin C, Weiss D, Collins J, Keith T, Boehnke M, Schellenberg GD, Tsuang MT (2003) Modest evidence for linkage and possible confirmation of association between NOTCH4 and schizophrenia in a large veterans affairs cooperative study sample. Am J Med Genet 118B(1):8–15PubMedCrossRefGoogle Scholar
  61. Smigielski EM, Sirotkin K, Ward M, Sherry ST (2000) dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 28:352–355PubMedCrossRefGoogle Scholar
  62. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71(4):877–892PubMedCrossRefGoogle Scholar
  63. Stober G, Saar K, Ruschendorf F, Meyer J, Nürnberg G, Jatzke S et al (2000) Splitting schizophrenia: periodic catatonia-susceptibility locus on chromosome 15q15. Am J Hum Genet 67:1201–1207PubMedGoogle Scholar
  64. Stober G, Seelow D, Ruschendorf F, Ekici A, Beckmann H, Reis A (2002) Periodic catatonia: confirmation of linkage to chromosome 15 and further evidence for genetic heterogeneity. Hum Genet 111(4/5):323–330PubMedGoogle Scholar
  65. Straub RE, Maclean CJ, O’Neill FA, Burke J, Murphy B, Duke F, Shinkwin R, Webb BT, Zhang J, Walsh D et al (1995) A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity. Nature Genet 11:287PubMedCrossRefGoogle Scholar
  66. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRefGoogle Scholar
  67. Wassink TH, Nopoulos P, Pietila J, Crowe RR, Andreasen NC (2003) NOTCH4 and the frontal lobe in schizophrenia. Am J Med Genet 118B(1):1–7PubMedCrossRefGoogle Scholar
  68. Yamada R, Tanaka T, Ohnishi Y, Suematsu K, Minami M, Seki T et al (2000) Identification of 142 single nucleotide polymorphisms in 41 candidate genes for rheumatoid arthritis in the Japanese population. Hum Genet 106:293–297PubMedCrossRefGoogle Scholar
  69. Yi X, White DM, Aisner DL, Baur JA, Wright WE, Shay JW (2000) An alternate splicing variant of the human telomerase catalytic subunit inhibits telomerase activity. Neoplasia 2:433–440PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Elida P. B. Ojopi
    • 1
  • Sheila Passos Gregorio
    • 1
    • 2
  • Pedro Edson Moreira Guimarães
    • 1
  • Cintia Fridman
    • 1
  • Emmanuel Dias Neto
    • 1
  1. 1.Laboratory of Neurosciences (LIM27)Institute of Psychiatry, HCFMUSPSão Paulo,SPBrazil
  2. 2.Chemistry Institute - IQ-USPSão PauloBrazil

Personalised recommendations