Magnetic Resonance Contrast Agents

  • Maythem Saeed


Contrast agents for cardiovascular imaging are used to enhance the capability of MRI and MRA. Since the advent of the first commercially available MR contrast agent (Gd-DTPA) at the end of the 1980s, investigators have made many advances in contrast-enhanced cardiovascular imaging, most importantly in the detection and characterization of ischemic myocardial injuries and vascular stenosis.


Iron Oxide Contrast Agent Diethylenetriaminepentaacetic Acid Infarcted Region Cardiovascular Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam G, Neuerburg J, Spüntrup E, et al (1994) Gd-DTPA-cascade-polymer: potential blood pool contrast agent for MR imaging. J Magn Reson Imaging 4:462–466PubMedCrossRefGoogle Scholar
  2. 2.
    Arheden H, Saeed M, Higgins CB et al (2000) Reperfused rat myocardium subjected to various durations of ischemia: estimation of the distribution volume of contrast material with echoplanar MRI. Radiology 215:520–528PubMedGoogle Scholar
  3. 3.
    Bloch F (1946) Nuclear induction. Phys Rev 70:460–477CrossRefGoogle Scholar
  4. 4.
    Bloembergen N, Morgan LO (1961) Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation. J Chem Phys 34:842–850CrossRefGoogle Scholar
  5. 5.
    Bloembergen N (1957) Proton relaxation times in paramagnetic solutions. J Chem Phys 27:572–581CrossRefGoogle Scholar
  6. 6.
    Bremerich J, Roberts TP, Wendland MF, et al (2000) Three-dimensional MR imaging of pulmonary vessels and parencyma with NC 100150 Injection (Clariscan™). J Magn Reson Imaging 11:622–628PubMedCrossRefGoogle Scholar
  7. 7.
    Canet E, Revel D, Forrat R, et al (1993) Super-paramagnetic iron oxide particles and positive enhancement for myocardial perfusion studies assessed by subsecond Tl-weighted MRI. Magn Reson Imaging 11:1139–145PubMedCrossRefGoogle Scholar
  8. 8.
    Caravan P, Ellison J J, McMurry TJ, et al (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics and applications. Chem Rev 99:2293–2352PubMedCrossRefGoogle Scholar
  9. 9.
    Choi SII, Choi SH, Kim ST, et al (2000) Irreversibly damaged myocardium at MR imaging with a necrosis tissue-specific contrast agent in a cat model. Radiology 215:863–868PubMedGoogle Scholar
  10. 10.
    Clarke SE, Weinmann H J, Dai E, et al (2000) Comparison of two blood pool contrast agents for 0.5-T MR angiography: experimental study in rabbits. Radiology 214:787–794PubMedGoogle Scholar
  11. 11.
    Diesbourg LD, Prato FS, Wisenberg G, et al (1992) Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease. Magn Reson Med 23:239–235PubMedCrossRefGoogle Scholar
  12. 12.
    Flacke S, Fischer S, Scott MJ, et al (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285PubMedCrossRefGoogle Scholar
  13. 13.
    Flacke SJ, Fischer SE, Lorenz CH (2001) Measurement of the gadopentate dimeglumine partition coefficient in human myocardium in vivo: Normal distribution and elevation in acute and chronic infarction. Radiology 218:703–710PubMedGoogle Scholar
  14. 14.
    Fritz-Hansen T, Rostrup E, Sondergaard L, et al (1998) Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI. Magn Reson Med 40:922–929PubMedCrossRefGoogle Scholar
  15. 15.
    Gerber BL, Bluemke DA, Chin BB, et al (2002) Single-vessel coronary artery stenosis: myocardial perfusion imaging with Gadomer-17 first-pass MR imaging in a swine model of comparison with gadopentate dimeglumine. Radiology 225:104–112PubMedCrossRefGoogle Scholar
  16. 16.
    Geschwind JF, Saeed M, Wendland MF, et al (1998) Depiction of reperfused myocardial infarction using contrast-enhanced spin echo and gradient echo magnetic resonance imaging. Invest Radiol 33:386–392PubMedCrossRefGoogle Scholar
  17. 17.
    Grist T, Korosec F, Peters D, et al (1998) Steady-state and dynamic MR angiographic imaging with MS-325: initial experience in humans. Radiology 207:539–544PubMedGoogle Scholar
  18. 18.
    Jerosch-Herold M, Wilke N, Wang Y, et al (1999) Direct comparison of an intravascular and an extracellular contrast agents for quantification of myocardial perfusion. Int J Card Imaging 15:453–364PubMedCrossRefGoogle Scholar
  19. 19.
    Johnsson L, Johnsson C, Penno E, et al (2002) Acute cardiac transplant rejection: detection and grading with MR imaging with a blood pool contrast agent — Experimental study in the rats. Radiology 225:97–103PubMedCrossRefGoogle Scholar
  20. 20.
    Kennan RP, Zhong J, Gore JC (1994) Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 31:9–21PubMedCrossRefGoogle Scholar
  21. 21.
    Klein C, Nagel E, Schnackenburg B, et al (2000) The intravascular contrast agent Clariscan™ (NC100150 injection) for 3D MR coronary angiography in patients with coronary artery disease. MAGMA 11:65–67PubMedGoogle Scholar
  22. 22.
    Kroft LJM, Doornbos J, van der Geest RJ, et al (1999) Blood pool contrast agent CMD-A2-Gd-DOTA-enhanced MR imaging of infarcted myocardium in pigs. J Magn Reson Imaging 10:170–177PubMedCrossRefGoogle Scholar
  23. 23.
    Krombach GA, Higgins CH, Chujo M, et al (2002) Blood pool enhanced MRI detects suppression of microvascular permeability in early post-infarction reperfusion after nicorandil therapy. Magn Reson Med 47:896–902PubMedCrossRefGoogle Scholar
  24. 24.
    Krombach GA, Wendland MF, Higgins CH, et al (2002) MR imaging of spatial extent of microvascular injury in reperfused ischemically injured rat myocardium: value of blood pool ultrasmall superparamagnetic particles of iron oxide. Radiology 225:479–486PubMedCrossRefGoogle Scholar
  25. 25.
    Lauffer RB, Parmelle DJ, Dunham SU, et al (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538PubMedGoogle Scholar
  26. 26.
    Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMRI: theory and design. Chem Rev 87:901–927CrossRefGoogle Scholar
  27. 27.
    Lauterbur PC, Mendonca-Dias MH, et al (1978) Augmentation of tissue water proton spin-lattice relaxation rate by in vivo addition of paramagnetic ions, In: Dutton PL, Leigh LS, Scarpa A (eds) Frontiers of Biological energetics, New York: Academic Press, pp 752–759CrossRefGoogle Scholar
  28. 28.
    Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:19–23CrossRefGoogle Scholar
  29. 29.
    Marchai G, Ni Y, Herijgers P, et al (1996) Paramagnetic metallo-porphyrins: infarct avid contrast agents for diagnosis of acute myocardial infarction by MRI. Eur Radiol 6:2–8CrossRefGoogle Scholar
  30. 30.
    Nelson TR, Hendrick RE, Hendee WR (1984) Selection of pulse sequences producing maximum tissue contrast in magnetic resonance imaging. Magn Reson Imaging 2:285–294PubMedCrossRefGoogle Scholar
  31. 31.
    Pislaru SV, Ni Y, Pislaru C et al (1999) Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. Circulation 99:690–696PubMedCrossRefGoogle Scholar
  32. 32.
    Prince MR (1994) Gadolinium-enhanced MR aortograpyhy. Radiology 191:155–164PubMedGoogle Scholar
  33. 33.
    Roberts HC, Saeed M, Roberts TPL, et al (1999) MRI of acute myocardial ischemia: comparing a new contrast agent, Gd-DTPA-24-cascade-polymer, with Gd-DTPA. J Magn Reson Imaging 9:204–209PubMedCrossRefGoogle Scholar
  34. 34.
    Rocklage SM, Watson AD (1993) Chelates of gadolinium and dysprosium as contrast agents for MR imaging. J Magn Reson Imaging 3:167–178PubMedCrossRefGoogle Scholar
  35. 35.
    Rosen BR, Belliveau JW, Vevea JM, et al (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265PubMedCrossRefGoogle Scholar
  36. 36.
    Ruehm SG, Corot C, Vogt P, et al (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422PubMedCrossRefGoogle Scholar
  37. 37.
    Runge VM (2000) Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging 12:205–213PubMedCrossRefGoogle Scholar
  38. 38.
    Saeed M, Bremerich J, Wendland MF, et al (1999) Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats. Radiology 213:247–257PubMedGoogle Scholar
  39. 39.
    Saeed M, Higgins CB, Geschwind JF, et al (2000) Tl-relaxation kinetics of extracellular, intracellular and intravascular MR contrast agents in normal and acutely reperfused infarcted myocardium using echo planar MR imaging. Eur Radiol 10:310–318PubMedCrossRefGoogle Scholar
  40. 40.
    Saeed M, Lund G, Wendland MF, et al (2001) Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation 103:871–876PubMedCrossRefGoogle Scholar
  41. 41.
    Saeed M, Wendland MF, Engelbrecht M, et al (1998) Value of blood pool contrast agents in magnetic resonance angiography of the pelvis and lower extremities. Eur Radiol 8:1047–1053PubMedCrossRefGoogle Scholar
  42. 42.
    Saeed M, Wendland MF, Lauerma K, et al (1995) Detection of myocardial ischemia using first pass contrast-enhanced inversion recovery and driven equilibrium fast GRE imaging. J Magn Reson Imaging 5:515–523PubMedCrossRefGoogle Scholar
  43. 43.
    Saeed M, Wendland MF, Masui T, et al (1993) Dual mechanisms for change in myocardial signal intensity by means of a single MR contrast Magnetic resonance contrast agents medium: dependence on concentration and pulse sequence. Radiology 186:175–182PubMedGoogle Scholar
  44. 44.
    Saeed M, Wendland MF, Yu KK, et al (1993) Dual effects of gadodiamide injection in depiction of the region of myocardial ischemia. J Magn Reson Imaging 3:21–29PubMedCrossRefGoogle Scholar
  45. 45.
    Solomon I, Bloembergen N (1956) Nuclear magnetic interactions in the HF molecule. J Chem Phys 25:261–266CrossRefGoogle Scholar
  46. 46.
    Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559–565CrossRefGoogle Scholar
  47. 47.
    Stillman AE, Wilke N, Li D, et al (1996) Ultra-small super paramagnetic iron oxide to enhance MRA of the renal and coronary arteries: studies in human patients. J Comput Assist Tomogr 20: 51–55PubMedCrossRefGoogle Scholar
  48. 48.
    Taylor AM, Panting JR, Keegan J, et al (1999) Safety and preliminary findings with the intravascular contrast agent NC 100150 Injection for MR coronary angiography. J Magn Reson Imaging 9:220–227PubMedCrossRefGoogle Scholar
  49. 49.
    van Beers BE, Gallez B, Pringot J (1996) Contrast-enhanced MRI of the liver. Radiology 203: 297–302Google Scholar
  50. 50.
    Vexier VS, Clement O, Schmitt-Willich H, et al (1994) Effect of varying the molecular weight of the MR contrast agent GdDTPA-polylysine on blood pharmacokinetic and enhancement patterns. J Magn Reson Imaging 4:381–388CrossRefGoogle Scholar
  51. 51.
    Wang SC, Wikstrom MG, White DL, et al (1990) Evaluation of Gd-DTPA-labeled dextran as an intravascular MR contrast agent: imaging characteristics in normal rat tissues. Radiology 175:483–488PubMedGoogle Scholar
  52. 52.
    Wehrli FW, MacFall JR, Glover GH, et al (1984) The dependence of nuclear magnetic resonance (NMR) imaging contrast on intrinsic and pulse sequence timing parameters. Magn Reson Imaging 2:3–16PubMedCrossRefGoogle Scholar
  53. 53.
    Weinmann HJ, Brasch RC, Press WR, et al (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol 142:619–624CrossRefGoogle Scholar
  54. 54.
    Weissleder R, Lee A, Khaw B, et al (1992) Detection of myocardial infarction with MION-antimyosin. Radiology 182:381–385PubMedGoogle Scholar
  55. 55.
    Wendland MF, Saeed M, Lauerma K et al (1997) Alterations in Tl of normal and reperfused infarcted myocardium after Gd-BOPTA versus Gd-DTPA on inversion recovery EPI. Magn Reson Med 37:448–456PubMedCrossRefGoogle Scholar
  56. 56.
    Wendland MF, Saeed M, Lund G, et al (1999) Contrast-enhanced MRI for qualification of myocardial viability. J Magn Reson Imaging 10: 694–702PubMedCrossRefGoogle Scholar
  57. 57.
    Wiener EC, Brechbiel MW, Brothers H, et al (1994) Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31:1–8PubMedCrossRefGoogle Scholar
  58. 58.
    Wolff SD (2002) Results of diagnostic trials of magnetic resonance angiography with MS-325, a blood pool contrast agent, for detection of peripheral vascular disease in the aortoiliac region. Am J Cardiol Sept 24 (131H)Google Scholar
  59. 59.
    Wood ML, Hardy PA (1993) Proton-relaxation enhancement. J Magn Reson Imaging 3:149–156PubMedCrossRefGoogle Scholar
  60. 60.
    Yu KK, Saeed M, Wendland MF, et al (1992) Real-time dynamics of an extravascular magnetic resonance contrast medium in acutely infarcted myocardium using inversion recovery and gradient-recalled echo-planar imaging. Invest Radiol 27:927–934PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Maythem Saeed

There are no affiliations available

Personalised recommendations